
Periodicals of Engineering and Natural Sciences  ISSN 2303-4521 

Vol. 8, No. 3, September 2020, pp.1288-1296 

 1288 

 

Effects of holes radius on plasmonic photonic crystal fiber sensor with 

internal gold layer 
 

 

Muayad H. Salman1, Haider K. Muhammad2, Hassan A. Yasser 3 
1 Imam AL-Kadhim University College, Baghdad, Iraq 

2 Physics Department, Education College, Thi-Qar University 

3 Physics Department, Science College, Thi-Qar University 

 

ABSTRACT   

In this study, a plasmonic photonic crystal fiber (PCF) sensor was designed with an internal gold layer 

between the liquid holes and the air holes. The study shown that the thickness of the gold layer, the radius of 

the air holes and the radius of the liquid holes all have a significant effect on the sensitivity of the sensor, 

where a wavelength sensitivity of (10,500 nm/RIU) was achieved at certain simulation conditions. Under 

these chosen conditions, the relationship of resonance wavelength with the refractive index of the liquid was 

linear and this gives flexibility to extend the range of the refractive index of the analyte without changing the 

sensor design. Approaching or moving away of the holes from center in the proposed design has a 

fundamental role in determining the sensor characteristics.  
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1. Introduction  

Over the last few decades, photonic biosensors have very attracted intense attention because of their promising 

applications in many fields including medical diagnostics, environment monitoring, organic chemical detection, 

temperature, magnetic fields, etc. [1,2]. A large number of optical fiber sensors have been developed based on 

several techniques such as resonant mirror, fiber Bragg grating, microring resonator, and Surface plasmon 

resonance (SPR) considered one of the most important techniques. The last technique is a prominent optical 

phenomenon, involving  resonant excitation of electromagnetic surface waves in combination with collective 

free electron oscillations in metal[3,4], the oscillations of collective charge at the metal-dielectric interfaces 

known as plasmonics surface waves (PSWs) can be easily guided and generated by coupling the electromagnetic 

field into charge-density particles of noble metals such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), 

etc. Along the interface of the metal-dielectric in the form of a traveling wave known as surface plasmon 

polariton (SPP) [5,6], creation the phase matching state between the SPP mode and the optical fiber-core guided 

mode at a given wavelength and fast response, accordingly, surface plasmons resonance (SPR) are promising, 

effective optical detection approach for the study of label free bio-molecular interactions in real time by label 

free sensing in a variety of bio-medical applications, and extremely sensitive to changes in the refractive index 

of the dielectric [7,8], hence, with changing analyte RI, the resonance wavelengths are shifted to lower or higher 

wavelength, so that the analyte can be properly detected [9].  

Noticeably, PSWs are excited by the evanescent fields present on a prism surface at complete internal reflection 

[10], on that perspective, that requires bulky components and restricts the use of such instrument to laboratory 

environment [6]. Using optical fibers instead of the prism has opened the way towards remote sensing 

applications based on SPR, with the advent and development of photonic optical fiber technology, a new era of 

optical sensing has emerged [11], which has the ability to solve all previous difficulties, where it is distinguished 
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by many important features such as low propagation loss, compact size, high degree of integration, geometrical 

flexibilities real-time detection ability, high sensitivity, etc. [11,12]. 

In this paper, a PCF based SPR-RI sensor is proposed. The performance of the proposed sensor is investigated 

using software COMSOL based on finite element method (FEM) with perfectly matched layer (PML). The main 

objective is to maximize and improve sensitivity 

2. Sensor design  

The schematic of the proposed FCF based SPR sensor is shown in Figure 1. The model consists of two rings of 

holes, where the inner contains six analyte holes with a radius 𝑅1. The holes spaced from each other by distance 

Λ1. The center of each circle is away from the sensor center by the distance 𝑟1. The outer ring consists of eight 

air holes with radius 𝑅2 that spaced from each other by distance Λ2. The distance between the center of each of 

them to the sensor center is 𝑟2. The radius of sensor extends to 𝑟4. Thereafter, the PML layer will be presented, 

to complete the sensor design, a gold layer with 𝑡𝑚 thickness and 𝑟3 radius will putting between the two rings 

of holes. Note that, air holes are made with a large radius to ensure the waveguide idea.  

In this work, we select Gold (Au) because of its distinctive properties, as an chemically noble metal, stable, 

does not suffer from oxidization, and has high resonance peak shifts compared to other active plasmonic 

materials like Ag, Cu and Al, etc., so a layer of Au with a different thickness are used to improve the sensing 

performance.  

 

 
 

Figure 1. The proposed structure of sensor 

 

Table 1. the definitions of sensor parameters 
 

 

 

 

 

 

 

 

3. Theoretical aspects  

The structure of the proposed sensor  is made of silica essentially, all the holes in the structure is empty i.e., air 

filled. So the refractive index of the silica is determined by the Sellmeier equation [13] 

 

𝑛2(𝜆) = 1 +
𝐴1 𝜆

2

𝜆2−𝐵1
+

𝐴2 𝜆2

𝜆2−𝐵2
+

𝐴3 𝜆2

𝜆2−𝐵3
                                                (1) 

parameter specification parameter Tested value 

r1  h   h  (3.5, 3.6, 3.7) m   

Λ1  h R1 (1.4,1.5,1.6) m  

r2 3.5 h R2 (3,3.15,3.3) m  

Λ2 3.5 h r4 15 m  

r3 1.486 h tm (80,100,120) nm 
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where, n is the refractive-index of silica, 𝜆 is the operating of the wavelength in the micrometer unit and A1, 

A2, A3, B1, B2,and B3 are Sellmeier coefficient available at Ref [12].  

Drude model at higher frequency regime is not suitable for calculating the real and imaginary part of dielectric 

constant (𝜀). This  problem can be nullified by introducing the interband (IB) effect as a sum of Lorentzian 

functions, One can easily express the dielectric function dependent on the frequency as 𝜀(𝜔) = 𝜀𝐷𝑟𝑢𝑑𝑒(𝜔) +
𝜀𝐼𝐵(𝜔) [14,15]. So, according to the Drude-Lorentz model, the material dispersion of  Au as the noble metal 

could be expressed as [16] 

 

𝜀𝐴𝑢 =  𝜀∞ −
𝜔𝐷

2

𝜔(𝜔+𝑗𝛾𝐷)
−

Δ𝜀 ΩL
2

(𝜔2−ΩL
2)+jΓL𝜔 

                                        (2) 

 

where, εAu refers to the permittivity of Au, ε∞ is the permittivity at a high frequency which its value of  5.9673. 

Also, 𝜔 , 𝜔𝐷 𝑎𝑛𝑑 𝑗𝛾 are the angular frequency , the frequency of the plasma and the frequency of the damping, 

respectively. Moreover, 𝛾𝐷 2𝜋⁄ = 15.92 𝑇𝐻𝑧, 𝜔𝐷 2𝜋⁄ = 2113.6 𝑇𝐻𝑧, and weighting factor is Δ𝜀 = 1.09. The 

Lorentz-oscillators strength and the width of the spectral are given by ΩL 2𝜋⁄ = 650.07 𝑇𝐻𝑧 and ΓL 2𝜋⁄  

=104.86 THz, respectively. The measurements of these optical data are heavily dependent on the experimental 

conditions, so the relevant optical data must be selected carefully.  

According to the mechanism of the phase matching between SPP and core modes were generated, the peaks of 

the loss are forming where the coupling occurs [2]. The confinement loss is a measurement to any change at the 

phase matching period. Therefore, The confinement loss is used by wavelength or spectral interrogation 

methods as a main source to detect changes on analyte, i.e. the unknown analyte can be detected from the 

resonant wavelength shifts or from the loss peaks of the amplitude variation, The confinement loss is calculated 

by using the expression as stated in [17,18]. 

 

𝛼𝑙𝑜𝑠𝑠(𝑑𝐵 𝑐𝑚⁄ ) ≈ 8.686 ×  𝑘0 𝐼𝑚{𝑛𝑒𝑓𝑓} × 104                              (3) 

 

where Im{neff} indicates the effective refractive index of the imaginary part and 𝑘0 = 2𝜋 𝜆⁄   and 𝜆 are the wave 

vector of free space and  the operating wavelength in micrometer unit, respectively. Essentially The plasmonic 

PCFs sensors are operated in the wavelength interrogation mode. So, change in the all values are detected by 

measuring the shift of absorption loss peak that will occur due to SPR phenomenon, there are two important 

main methods used, the first is a spectral- based defined as [3] 

 

𝑆(𝜆)(𝑛𝑚 𝑅𝐼𝑈⁄ ) =
𝜕𝜆𝑝𝑒𝑎𝑘

𝜕𝑛𝑎
                                                              (4) 

 

where 𝜕𝜆𝑝𝑒𝑎𝑘 and 𝜕𝑛𝑎 are the difference of  wavelength length between two loss curves for two adjacent RI of 

analytes (na) and RI of analytes difference. Noticeably, in this work has been taken (𝜕𝑛𝑎 = 0.01). The second 

detection approach, considering as another performance quantifying parameter of the biosensor which depends 

on RI contrast of the core-cladding, the amplitude-based method of detection can be given as [19,20] 

 

𝑆(𝜆)(𝑅𝐼𝑈−1)= −
1

𝛼(𝜆, 𝑛𝑎)

𝜕𝛼(𝜆, 𝑛𝑎)

𝜕𝑛𝑎
                                                (5) 

 

where 𝜕𝑛𝑎 refers to the difference of loss between two consecutive RI analyte and  𝛼(𝜆,  𝑛𝑎)  is the propagation 

loss of the core mode as a function of the operating wavelength.  

4. Results and discussion  

All simulations are performed using the values: h = 3.5 µm, R1 =1.5µm, R2 =3µm, tm = 80nm, r4 =15µm and will 

be indicated in time when a change occurs. The COMSOL environment was used to determine the relation 

between wavelength and effective refractive index, where this software uses finite element method (FEM) that 

is built on the basis of dividing the cross section into small parts and forming the mesh. The type and accuracy 

of the mesh are chosen in order to achieve better accuracy with a suitable operating time for the computer.  

Figure 2 represents the relationship of the loss with the wavelength of the refractive indices of the analyte (na 

=1.37, 1.38, 1.39, 1.40) using several values of the factor h. It is clear from the figure that there are 

approximately two peaks for each na value for all states h within the wavelength range (1.9-2.3 µm), but in the 
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case (h =3 µm) we notice that the first set of values is separated from the second set of values. In other h states, 

we cannot see such a distinction of all na values. Therefore, for the first case (h = 3 µm) we can choose the 

wavelength range (1.92-2.3 µm) to obtain a set of distinguishing peaks for the different values of refractive 

index na. This state was obtained when (R1 =1.5 µm, R2 =3 µm, tm = 100nm) and we will therefore restrict 

ourselves to working within these limits to obtain the best results. The sensitivity of the wavelength for the best 

case in the figure when selecting the second set of peaks is about (9000nm/RIU) which are noteworthy values 

in this field and we will try to remain with the coefficients change (R1, R2, tm) as an attempt to increase the 

wavelength sensitivity and study other measures used in the sensor field.  

 

 
Figure 2. Confinement loss as a function wavelength of the analyte refractive indices 

na =1.37, 1.38, 1.39, 1.40  using different values of h 

 

Figure 3 represents the relationship of the loss with the wavelength of the refractive indices (na =1.37, 1.38, 

1.39, 1.40) using several values of the factor R1, which represents the radius of the small circle that contains the 

analyte. We note from the figure that the best case is at (R1 =1.5 µm), which gives the best spacing between the 

peaks and the highest value of the peaks. That is, it will be the best in terms of the wavelength sensitivity and 

amplitude sensitivity. Table 2 gives the sensitivity of the wavelength associated with all values of R1 . 

lease make sure that the paper you submit is final and complete, that any copyright issues have been resolved, 

that the authors listed at the top of the chapter really are the final authors, and that you have not omitted any 

references. Following publication, it is not possible to alter or withdraw your paper on SpringerLink. Kindly 

note that we prefer the use of American English. 

 

 

Figure 3. Confinement loss as a function wavelength of the analyte refractive indices 

 na =1.37, 1.38, 1.39, 1.40  using different values of  R1 

 

Note that the state (R1 =1.4 µm) may have outperformed wavelength sensitivity values, but it would not be the 

best in the amplitude sensitivity field. However, the curves for different na values show different peaks that are 

further spaced with na increasing. That is, the sensitivity here increases for the greater na coefficients. With 

increasing R1, the verification of the distinct peaks for the different na coefficients will not be achieved and we 
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will not be able accordingly to determine the refractive index of the liquid, where the state (R1 = 1.6µm) shows 

a completely different behavior that will not be useful in the field of sensors. 

 

Table 2. Wavelength sensitivity for different values of R1, R2, tm. 

 

 

 

 

 

 

Figure 4 represents the loss relationship as a function of the wavelength of the refractive indexes (na =1.4, 1.39, 

1.38, 1.37) using several values of R2, which represents the radius of the large circles containing the air. It is 

evident from the figure that all the values of R2 achieve distinct values that increase their spacing with an 

increase in the values of R2, but this is accompanied by a decrease in the value of the peaks. State (R2 =3 µm) 

shows the highest value and lowest spacing of peaks, noting that the start of the wavelength values indicates a 

peak near the left side that will seem to cause confusion when we choose (R2 ˂3 µm). Generally, table (2) 

indicates the best wavelength sensitivity we get when (R2 =3.3µm). Also here that the peaks show the beginning 

of the lowest refractive index na. And that the sensitivity increases for the greater na coefficients and that the 

wavelength that causes the peaks will shift to the left. Note here that the present behavior appears for the 

coefficients (R1 =1.5 µm, tm =100nm) and will change significantly as these coefficients change.  

 

 

Figure 4. Confinement loss as a function wavelength of the analyte refractive indices 

 na =1.37, 1.38, 1.39, 1.40   using different values of R2 

 

Figure 5 represents the relationship of the loss to the wavelength for different refractive factors (na =1.37, 1.38, 

1.39, 1.40) using several values of the factor tm, which represents the thickness of the gold layer. We notice 

here that the best case for the values divergence is the state (tm =100nm), with the fact that the case (tm =80nm) 

gives the highest values for the peaks. At (tm=120nm), note that the standard shape of the peaks that belong to 

the different na coefficients will disappear and one of the peaks will appear abnormally from their counterparts. 

We also note that for the case (tm =100nm), the first peak appears at (λ ≈2.01 µm), for the case (tm =80nm) the 

first peak appears at (λ ≈2.08 µm) and at (tm = 120nm) we see that all the peaks shift to the left. It is clear from 

Table 2 that the best wavelength sensitivity is achieved at (tm =100nm) and decreased with a change of tm value. 

Table 3 represents the values of refractive index resolution obtained by adopting the changes during the 

simulation. It is clear that the lowest value occurs when (R2 =3. 15 µm), (R1 =1.5 µm) and (tm =100nm) which 

is (9.7×10-6 RIU) at (na = 1.4) which corresponds to the highest wavelength sensitivity, which is (10300nm / 

RIU) . 

R1 

value 

in  µm   

Wavelength 

sensitivity 

(nm/RIU) 

R2 

value 

in  µm 

Wavelength 

sensitivity 

(nm/RIU) 

tm  

value 

in  nm 

Wavelength 

sensitivity 

(nm/RIU) 

1.4 6000,8000,9000 3 2000,5000,9000 80 1000,4000,6000 

1.5 2000,5000,9000 3.15 6000,8000,10300 100 2000,5000,9000 

1.6 1000,2000,4000 3.3 7000,8000,10000 120 4000,5000,8000 
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Figure 5. Confinement loss as a function wavelength of the analyte refractive indices 

na =1.37, 1.38, 1.39, 1.40   using different values of tm 

 

Table 3. Refractive index resolution for different values of  R1, R2, tm 

R1 

( µm) 
Refractive index 

resolution (RIU)×10-5 
R2 

(µm) 
Refractive index 

resolution (RIU) ×10-5 
tm 

(nm) 
Refractive index 

resolution (RIU)×10-5 

1.4 1.67, 1.25, 1.11 3 5, 2, 1.11 80 10, 2.5, 1.67 
1.5 5, 2, 1.11 3.15 1.67, 1.25, 0.97 100 5, 2, 1.11 

1.6 10, 5, 2.5 3.3 1.43,1.25, 1 120 2.5, 2, 1.25 

 

Figure 6 represents the amplitude sensitivity as a function of the wavelength of the refractive indices (na=1.4, 

1.39, 1.38, 1.37) for different values of R1. When (R1 =1.4 µm), all cases of na will achieve the maximum equal 

amplitude sensitivity, up to (35RIU-1). When (R1 =1.5 µm), the values differ for the different na values. From 

this we conclude that the case (R1 =1.5 µm) is the best . 

 
 

Figure 6. Amplitude sensitivity as a function wavelength of the analyte refractive indices 

na =1.37, 1.38, 1.39, 1.40 using different values of R1 

 

Figure 7 represents the amplitude sensitivity as a function of the wavelength of the refractive indexes (na =1.37, 

1.38, 1.39, 1.40) for different values of R2. We note from the figure that the case (R2=3 µm) is less than the other 

two cases, and the case (R2 =3.3 µm) is slightly superior to the case (R2 =3.15µm). That is; the best designs are 

made by making (R2 =3.3). Here, the amplitude sensitivity of the anlyte with the lowest refractive index will be 

the highest . 
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Figure 7. Amplitude sensitivity as a function wavelength of the analyte refractive indices 

na =1.37, 1.38, 1.39, 1.40 using different values of R2 

 

Figure 8 represents the amplitude sensitivity as a function of the wavelength of the refractive indexes (na =1.37, 

1.38, 1.39, 1.40) for different values tm. We generally note that the higher the refractive index liquid is the 

higher amplitude sensitivity is achieved, and the amplitude sensitivity differences vary with the change of tm. 

We note that the state (tm =100nm) achieves better distinction in the peaks and thus can be adopted to maximize 

amplitude sensitivity.  

Table 4 summarizes the maximum amplitude sensitivity achieved for all cases of the acceptable cases that can 

be adopted . 

 

 
 

Figure .8. Amplitude sensitivity as a function wavelength of the analyte refractive indices 

na =1.37, 1.38, 1.39, 1.40 using different values of tm 

 

Table 4. Maximum amplitude sensitivity for different values of R1, R2, tm. 

Figure 9 represents the resonance wavelength relationship as a function of na for different states (R1, R2, tm). We 

note from the figure that most relationships are semi-linear, as the closest relationship to linearity is the one that 

achieves the best sensor as long as the range na can be expanded to other values. When (R1 =1.6µm) we see that 

the relationship is not linear and is completely rejected. Other cases of R1 are not completely linear and it is 

possible to search near these values to achieve linearity. When (R2 =3.3µm) the relationship is very close to be 

linear, and we noticed previously that it is the best case followed by (R2 = 3.15µm) and then (R2 = 3µm). All tm 

cases are not completely linear but can be accepted to achieve optimum design conditions . 
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Figure 9. Wavelength of resonance as function of refractive index of  

analyte under the effects of R1, R2, tm 

 

5       Conclusions  

The most important conclusion was achieved by obtaining the sensor property at (h =3µm) and its absence it at 

other values. The wavelength associated with the sensor property is in the range (1.93-2.3µm). When (R1 

=1.5µm, R2 =3.3µm, tm =100nm) the best results are achieved in the field of wavelength amplitude and amplitude 

sensitivity. The best sensor can be obtained within these values, which achieves the linearity between the 

wavelength of resonance and the refractive index of the liquid, since the linearity leads us to the possibility of 

using the sensor for other values of na outside the simulation values. 
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