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ABSTRACT   

The research studied and analyzed the hybrid parallel-series systems of asymmetrical components by 

applying different experiments of simulations used to estimate the reliability function of those systems 

through the use of the maximum likelihood method as well as the Bayes standard method via both 

symmetrical and asymmetrical loss functions following Rayleigh distribution and Informative Prior 

distribution.  

       The simulation experiments included different sizes of samples and default parameters which were then 

compared with one another depending on Square Error averages. Following that was the application of Bayes 

standard method by the Entropy Loss function that proved successful throughout the experimental side in 

finding the reliability function for the soap manufacturing machines of the State Company for Vegetable Oils 

Industries whose behavior was based on the hybrid parallel-series system of a symmetrical component that 

followed both the exponential distribution and the Rayleigh distribution.  
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1. Introduction 

The widespread of industry and the advancements in mechanical, electrical and electronic fields of knowledge 

invested in machines and equipment throughout the past century, brought with it an increased interest in the 

concept of reliability to be applied in modern researches and studies, an interest that seemed logical in the light 

of the rapidly advancing technologies that paved the road for the use of complex systems in different walks of 

life. Those developments made it a persistent need finding out the reasons behind the stoppages and failures of 

all kind of machines and equipment, since a failure in the work of a machine or equipment would lead to material 

losses, not to mention the reduction in production of course. 

The majority of the previous studies in this field focused on studying the reliability of simple systems consisted 

of symmetrical or asymmetric components with series-parallel reliability systems, whereas many of the 

production sources are being made of working systems that are complex, nested in structure and asymmetrical 

in their behavior. Therefore, in this research, the hybrid parallel-series systems of asymmetrical components 

were studied and analyzed by applying different experiments of simulations used to estimate the reliability 

function of those systems 
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       One of the old researches in this field was done by Raheem (2014) dedicated to study the estimators of the 

reliability function of the hybrid parallel-series systems and improved systems by applying the Bayes method 

[1]. On the other hand, Al-Saaidi (2016) succeeded in setting a model and estimating the reliability function for 

the A-out-of-H system and series system for cases where its components are not identical [2]. Whereas the 

Weibull Rayleigh distribution was applied by Merovci and Elbatal (2015), where the three-parameter 

hypothetical span life model was defined and studied. Some structural features of the new distribution were 

considered by applying the maximum likelihood method as well as the least squares method to estimate the 

parameters as well as to work out the information matrix of Fischer [3]. The researchers were able to explain 

the usefulness of the suggested model by applying it on real data.  Uwaid (2012) used balanced and unbalanced 

loss functions to compare the Bayes estimators for the reliability function parameter, and failure rate of the 

Rayleigh distribution [4]. Dey (2012) considered the Bayes estimators of the parameter and reliability function 

of the Invers Rayleigh distribution using both symmetric and asymmetric loss functions and compared its 

performance based on a Monte Carlo simulation study [5].  

On the other hand, Sha, et al. in 2015, took into consideration the statistical interference of two main hybrid 

systems of series-parallel and parallel-series systems based on masked data for the lifespan of the components. 

They had been designed by the bivariate exponential distribution of the variables involved [6]. Through his 

study, Luguterah (2016), suggested a new generalization for Rayleigh distribution called the odd generalized 

exponential Rayleigh distribution, where mathematical features were derived and where the application of the 

new model proved it to be appropriate for obtaining a better suitability compared to some currently used 

distributions [7]. 

Likewise, Monte Carlo simulation technique was used in [8] to compare the performance of MLE and the 

standard Bayes estimators of the reliability function of the one parameter exponential distribution. Two types 

of loss functions are adopted, namely, squared error loss function and modified square error loss function with 

informative and non-informative prior.   

This study was organized in a way that the second part would deal with both the exponential distribution and 

the Rayleigh distribution along with the reliability function for each of them. The third part involves estimating 

the parameters and the reliability function for both the exponential and Rayleigh distributions through the 

application of maximum likelihood method and the standard Bayes method by means of identical and non-

identical loss functions. The fourth part has dealt with the types of the reliability systems, focusing afterwards 

on the asymmetrical hybrid parallel-series system and how to find out its reliability function parameters by 

means of the estimation methods referred to in the third part. The fifth part covered the simulation experiments 

by applying the different simulation experiments applied in estimating the reliability function of the 

asymmetrical hybrid parallel-series system and that by means of the Maximum Likelihood method and the 

standard Bayes method with different loss functions, with the parameters estimated through those methods being 

compared with each other depending on the mean square error as a criterion. The sixth part was devoted to the 

practical application side using real data through the estimation of the reliability function for the soap 

manufacturing system of the state company for vegetable oils industry, since the industry included partial 

systems following the asymmetrical hybrid parallel-series system behavior. The seventh and last part was 

dedicated for the most important conclusions reached through the fifth and sixth parts.  
2. The exponential and Rayleigh distribution 

The probability density function for the random variable Y that follows the exponential distribution of the 

parameter α could be defined according to the following formula:  

𝑓(𝑦; 𝛼) =
1

𝛼
 𝑒− 

𝑦
𝛼                                ;   𝑦, 𝛼 > 0                                                                         (1) 

While the formula of the cumulative density function is: 

𝐹(𝑦; 𝛼) = Pr(𝑌 ≤ 𝑦) = ∫𝑓(𝑦)𝑑𝑦

𝑦

0

= 1 −  𝑒− 
𝑦
𝛼                                                                                       (2) 

      Also, the reliability function could be defined as follows:  

𝑅(𝑦; 𝛼) = Pr(𝑌 > 𝑦) = 1 − 𝐹(𝑦; 𝛼) =   𝑒− 
𝑦
𝛼                                                                                          ( 3) 

The random variable v that follows the Rayleigh distribution with one parameter has a probability density 

function that could be defined by the following formula:  

(𝑣 | 𝜔 ) =
𝑣

𝜔 2
 𝑒
−(

𝑣2

2𝜔 2
)
               ;  𝑣 ≥ 0  , 𝜔 > 0                                                                                      (4) 
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      The cumulative density function, reliability function and risk function for the Rayleigh distribution are as 

follows:  

𝐹(𝑣) = 1 −  𝑒
− ( 

𝑣 2

 2𝜔2 
) 
                                                                                                                                    (5) 

𝑅(𝑣) = 𝑒
−( 

𝑣 2

2𝜔2 
)
                                                                                                                                               (6) 

ℎ(𝑣) =
𝑣

𝜔 2 
                                                                                                                                      (7) 

3. Methods of estimating the parameter and the reliability function 

3.1. Maximum likelihood method 

      If 𝑦1, 𝑦2, … , 𝑦𝑛 represents a random independent sample of the observations of a variable following the 

exponential distribution, then likelihood function for the random variable y is:  

𝐿(𝑦𝑖|𝛼) =∏𝑓(𝑦𝑖|𝛼)

𝑛

𝑖=1

=∏𝛼−1 𝑒− 
𝑦𝑖
𝛼  

𝑛

𝑖=1

= 𝛼−𝑛 𝑒− 
∑ 𝑦𝑖
𝑛
𝑖=1
𝛼                                                                      (8) 

      Thus we can get the estimator for the maximum likelihood method for the parameter α by calculating the 

natural logarithm of the formula (8), working out the partial derivative for the α parameter, and then 

equalizing the derivative to zero.  

𝛼̂𝑀𝐿 =
∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
                                                                                                                                                  (9) 

The reliability function of the exponential distribution could be estimated depending on the maximum 

likelihood method's state of stability and that by substituting equation (9) into equation (3) according to the 

following formula, as introduced in [9]:  

𝑅̂(𝑦)𝑀𝐿 = 𝑒
− (

∑ 𝑦𝑖
𝑛
𝑖=1
𝑛 )  𝑦

                                                                                                                                (10) 
Concerning the random variable that follows Rayleigh distribution, it is possible to get the estimator for the 

maximum likelihood for parameter 𝜔 by taking the natural logarithm of the likelihood function and then 

working out the partial derivative for the 𝜔 parameter and then equalizing the derivative to zero, as follows:  

𝐿(𝑣𝑖|𝜔) =∏𝑓(𝑣𝑖|𝜔)

𝑛

𝑖=1

=∏
𝑣

𝜔2
 𝑒
−(

𝑣2

2𝜔 2
)
 

𝑛

𝑖=1

= (
𝑣

𝜔2
)
𝑛

 𝑒
− 
∑ 𝑣𝑖

2𝑛
𝑖=1
2𝜔2                                                        (11) 

𝐿𝑛𝐿(𝑣𝑖|𝜔) =∑𝐿𝑛(𝑣𝑖)

𝑛

𝑖=1

− 2𝑛 𝐿𝑛(𝜔)  −
∑ 𝑣𝑖

2𝑛
𝑖=1

2𝜔2
 

𝜔̂𝑀𝐿 = (
∑ 𝑣𝑖

2𝑛
𝑖=1

2𝑛
)

1
2

                                                                                                                                       (12) 

By substituting equation (12) into equation (6), Uwaid (2012) in [4], got the maximum likelihood estimator for 

the reliability function of the Rayleigh distribution, as follows:  

𝑅̂(𝑣)𝑀𝐿 = 𝑒
−( 

𝑣 2

2𝜔̂2 
)
= 𝑒

−( 
𝑛 𝑣 2

∑ 𝑣𝑖
2𝑛

𝑖=1

)
                                                                                                            (13) 

3.2. Standard Bayes method   

The Bayes standard method supposes that the parameters needed to be estimated are random variables about 

which prior information must be available and must be represented as a Prior Distribution so that by using the 

Bayes Inversion Formula which combines the Prior Distribution and the Likelihood Function it becomes 

possible to get a probable density function that is known as the Posterior Distribution as per the following 

formula , as introduced  in [10]:  

𝑃(𝜑|𝑥) =  
𝐿(𝑥|𝜑) 𝑃(𝜑)

∫  𝐿(𝑥|𝜑) 𝑃(𝜑)𝑑𝜑
 

∀𝜑

                                                                                                              (14) 

Where:  

𝐿(𝑥|𝜑) represents the likelihood function for an 𝑛 size sample of the random variable X observations.   

𝑃(𝜑) represents the primary probability density function for parameter 𝜑 

𝑃(𝜑|𝑋) represents the posterior probability density function for parameter 𝜑 
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3.2.1. Prior distribution 

There are a number of prior probable distributions, some of which are those distributions where there is not 

enough information about the parameter needed to be estimated, or where no parameter information is available 

at all. In such cases, the prior distribution is obtained depending on the domain of the parameter needed to be 

estimated. This kind of distribution is called the Non-Informative Prior Distribution. However, when prior 

information about the parameter needed to be estimated is available from old experiments, then the Conjugate 

Prior density function, which is also known as the Informative Prior distribution, is applied. These are 

parameter-known probability functions that are selected depending on the likelihood function of the 

observations of the random variable for the parameters needed to be estimated. Accordingly, those functions 

must be specific and should be appropriate for the probability distribution. Bergor in [11], considered  the 

conjugate prior function for both the exponential distribution and Rayleigh distribution follow the Inverted 

Gamma Distribution for (𝜇, 𝜎)parameters and their formula , as follows:  

𝑃(𝛼) ∝  𝛼−(𝜇+1) 𝑒− 
𝜎
𝛼                         ;   𝛼, 𝜇, 𝜎, > 0                                                                                  (15) 

𝑃(𝜔) ∝  𝜔−(𝜇+1) 𝑒
− 

𝜎
2𝜔2                     ;   𝜔, 𝜇, 𝜎, > 0                                                                                (16) 

3.2.2. Posterior distribution 

The Posterior distribution for the parameter of the random exponential distribution is found by substituting 

equations (8) and (15) into equation (14) as follows:  

𝑃(𝛼|𝑦) =
𝛼−𝑛   𝛼−𝜇−1  𝑒− 

𝜎
𝛼  𝑒− 

 ∑ 𝑦𝑖
𝑛
𝑖=1
𝛼

  

∫  𝛼−𝑛 𝛼𝜇−1 𝑒− 
𝜎
𝛼   𝑒− 

 ∑ 𝑦𝑖
𝑛
𝑖=1
𝛼

 𝑑𝛼
∞

0

=
 𝛼−{(𝑛+𝜇)+1}   𝑒− 

 𝜎+∑ 𝑦𝑖
𝑛
𝑖=1
𝛼

∫  𝛼−{(𝑛+𝜇)+1} 𝑒− 
 𝜎+∑ 𝑦𝑖

𝑛
𝑖=1
𝛼 𝑑𝛼

∞

0

 

 

Thus the formula for the posterior distribution of the exponential distribution is:   

𝑃(𝛼|𝑦) =
(𝜎 + ∑ 𝑦𝑖

𝑛
𝑖=1 )(𝑛+𝜇)

(𝑛 + 𝜇)
  𝛼−{(𝑛+𝜇)+1} 𝑒− 

 (𝜎+∑ 𝑦𝑖)
𝑛
𝑖=1
𝛼                                                                       (17) 

 
      Also, it is possible to find the posterior distribution for the random Rayleigh distribution parameter by 

substituting equation (11) and equation (16) into equation (14) as follows:  

𝑃(𝜔|𝑣) =
𝜔−(𝜇+1)   (

𝑣
𝜔2
)
𝑛
𝑒
− 

𝜎
2𝜔2   𝑒

− 
∑ 𝑣𝑖

2𝑛
𝑖=1
2𝜔2

∫ 𝜔−(𝜇+1)   (
𝑣
𝜔2
)
𝑛
𝑒
− 

𝜎
2𝜔2   𝑒

− 
∑ 𝑣𝑖

2𝑛
𝑖=1
2𝜔2

∞

0
 𝑑𝜔

 

𝑃(𝜔|𝑣)  =
𝜔−(2𝑛+𝜇+1)  𝑒

− 
𝜎+∑ 𝑣𝑖

2𝑛
𝑖=1

2𝜔2

∫ 𝜔−(2𝑛+𝜇+1)  𝑒
− 
𝜎+∑ 𝑣𝑖

2𝑛
𝑖=1
2𝜔2

∞

0
 𝑑𝜔

                                                                                            (18) 

Moreover, it is possible to find the integrating denominator through the following conversion:  

𝐼 = ∫ 𝜔−(2𝑛+𝜇+1)  𝑒
− 
𝜎+∑ 𝑣𝑖

2𝑛
𝑖=1

2𝜔2

∞

0

 𝑑𝜔                                                                                                          (19) 

𝑥 =
𝜎 + ∑ 𝑣𝑖

2𝑛
𝑖=1

2𝜔2
                                                                                                                                           (20)  

𝜔 = (
𝜎 + ∑ 𝑣𝑖

2𝑛
𝑖=1

2𝑥
)

1
2

                                                                                                                                   (21) 

|𝐽 | = |
𝑑ω 

𝑑𝑥
| = |−

(𝜎 + ∑ 𝑣𝑖
2𝑛

𝑖=1  )
1
2

(2𝑥)
3
2

|  ⇒𝑑ω =
(𝜎 + ∑ 𝑣𝑖

2𝑛
𝑖=1  )

1
2

(2𝑥)
3
2

 𝑑𝑥                                                   (22) 

By substituting equations (20), (21), and (22) into equation (19), we can obtain:  

𝐼 =
1

2
  (

2

∑ 𝑣𝑖
2𝑛

𝑖=1 + 𝜎
)

2𝑛+𝜇
2

   ∫ 𝑥
2𝑛+𝜇
2

 −1  𝑒−𝑥
∞

0

  𝑑𝑥 
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And through the characteristics of Gamma function, we will observe that: 

∫ 𝑥
2𝑛+𝜇
2

 −1  𝑒−𝑥
∞

0

  𝑑𝑥 = { (
2𝑛 + μ

2
)} 

This in turn leads to:  

𝐼 =
1

2
  (

2

∑ 𝑣𝑖
2𝑛

𝑖=1 + 𝜎
)

2𝑛+𝜇
2

   (
2𝑛 + μ

2
)                                                                                              (23) 

       By substituting the result of the integration that was obtained by equation (23) into equation (18), the 

posterior distribution function for the Rayleigh distribution parameter will be:  

 

𝑃(𝜔|𝑣)  =

2  (
∑ 𝑣𝑖

2𝑛
𝑖=1 + 𝜎

2 )

2𝑛+𝜇
2

  𝑒
− 
𝜎+∑ 𝑣𝑖

2𝑛
𝑖=1
2𝜔2

   (
2𝑛 + μ
2 ) 𝜔(2𝑛+𝜇+1)

                                                                                  (24) 

3.2.3. Loss functions 

 The loss function, according to Bayes method, is the difference between the estimated value of the parameter 

and its real value, that is φ̂ − φ . The Loss function is usually denoted as 

𝐿(𝜑̂, 𝜑) , where the following conditions are met:  
𝑖.    𝐿 (𝜑̂, 𝜑 ) = 0                                    ;  ∀ 𝜑̂ = 𝜑    
𝑖𝑖.   𝐿 (𝜑̂, 𝜑 ) > 0                                    ;  ∀ 𝜑̂  >  𝜑    
By means of the Risk function which is also known as being the mathematical prediction of the loss function, 

we know that the amount that puts the loss function to minimum is the standard Bayes estimator for the 

parameter 𝜑 as is shown in the following formula:  

𝜑𝐵 = 𝑅𝑖𝑠𝑘(𝜑̂, 𝜑) = 𝐸{𝐿(𝜑̂, 𝜑)} =  ∫ 𝐿 (𝜑̂, 𝜑 ) 𝑃(𝜑|𝑥)𝑑𝜑
 

∀𝛼

                                                                (25) 

      Likewise, if 𝑔(𝜑 ) is a function by the parameter  𝜑 , then the standard Bayes method estimator for 𝑔(𝜑 ) 
function is:  

𝑔(𝜑)𝐵 = ∫ 𝑔(𝜑 ) 𝐿 (𝜑̂, 𝜑 ) 𝑃(𝜑|𝑥)𝑑𝜑
 

∀𝛼

                                                                                                 (26) 

       Based on symmetry, researchers classify loss functions into two categories: the first one, the Symmetric 

Loss Functions, supposes the amount of loss obtained through estimation to be equal on both positive and 

negative sides, that is 𝐿(𝜑̂, 𝜑) = |𝜑̂ − 𝜑|,with the most important and most common symmetric loss function 

being the Squared Error Function, which could be mathematically defined as follows:  

𝐿( 𝜑 ̂, 𝜑) =  ( 𝜑 ̂ − 𝜑 )2                                                                                                                               (27) 
Generally speaking, it is possible to find the Bayes method estimator for the (𝜑)  parameter by means of square 

error function as in formula (25):  

φ ̂𝐵𝑆 = 𝑅(𝜑̂, 𝜑) = 𝐸(𝜑 ̂ − 𝜑 )
2 = ∫(𝜑 ̂ − 𝜑 )2

 

∀𝛼

𝑃(𝜑|𝑥 )𝑑𝜑 

φ ̂𝐵𝑆 = 𝐸(𝜑|𝑥) = ∫𝜑𝑃(𝜑|𝑥 )𝑑𝜑 

 

∀𝜑

 

The standard Bayes method estimator for the reliability function by means of the square error loss function as 

by formula (26) would be:  

𝑅̂(𝑥, 𝜑)𝐵𝑆 = ∫𝑅(𝑥, 𝜑) 𝑃(𝜑|𝑥 )𝑑𝜑 

 

∀𝜑

                                                                                                         (28) 

The second category of the loss functions is the asymmetric loss functions that supposes that the amount of loss 

obtained through the estimation process is not being equal on both positive and negative sides. There are a 

number of asymmetric loss functions but the one used in this study is the entropy loss function that has the 

following formula:  

𝐿(𝜑̂, 𝜑) = (
𝜑 ̂

𝜑 
) − 𝐿𝑛 (

𝜑 ̂

𝜑 
) − 1                                                                                                                     (29) 
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The Bayes method estimator obtained through the Entropy Loss function depending on the Bayes risk function 

formula is:  

φ ̂𝐵𝐸 = 𝑅(𝜑̂, 𝜑) = 𝐸 {(
𝜑 ̂

𝜑 
) − 𝐿𝑛 (

𝜑 ̂

𝜑 
) − 1} = ∫{(

𝜑 ̂

𝜑 
) − 𝐿𝑛 (

𝜑̂

𝜑 
) − 1}

 

∀𝜑

𝑃(𝜑|𝑥 )𝑑𝜑  

φ ̂𝐵𝐸 = [𝐸(φ 
−1 | 𝑥)]−1 = { ∫𝜑−1

 

∀𝜑

𝑃(𝜑|𝑥 )𝑑𝜑}

−1

                                                            

 Likewise, the Bayes method estimator for the reliability function obtained using the entropy loss function and 

through the formula (26) would be: 

𝑅̂(𝑥)𝐵𝐸 = [𝐸{ 𝑅(𝑥, 𝜑)
−1 | 𝑥}]−1 = { ∫{𝑅(𝜑)}−1

 

∀𝜑

𝑃(𝜑|𝑥 )𝑑𝜑}

−1

                                                      (30) 

3.2.4 The standard Bayes method estimators for the reliability function 

The standard Bayes method estimator for the exponential-distribution reliability function obtained by applying 

the square loss function through the equations (3), (17) and (28) could be as follows:  

𝑅̂(𝑦)𝐵𝑆 = 𝐸{𝑅(𝑦, 𝛼)|𝑦} = ∫𝑅(𝑦) 𝑃(𝛼|𝑦 )𝑑𝛼 

 

∀𝛼

 

𝑅̂(𝑦)𝐵𝑆 = ∫ (𝑒− 
𝑦
𝛼) 

(𝜎 + ∑ 𝑦𝑖
𝑛
𝑖=1 )𝑛+𝜇

(𝑛 + 𝜇)
   𝛼−(𝑛+𝜇+1) 𝑒− 

(𝜎+∑ 𝑦𝑖) 
𝑛
𝑖=1
𝛼  𝑑𝛼

∞

0

 

𝑅̂(𝑦)𝐵𝑆 =
(𝜎 + ∑ 𝑦𝑖

𝑛
𝑖=1 )𝑛+𝜇

(𝑛 + 𝜇)
∫    𝛼−(𝑛+𝜇+1) 𝑒− 

(𝜎+𝑦+∑ 𝑦𝑖) 
𝑛
𝑖=1

𝛼

∞

0

𝑑𝛼 

So:  

𝑅̂(𝑦)𝐵𝑆 = {
𝜎 + ∑ 𝑦𝑖

𝑛
𝑖=1

(𝜎 + 𝑦 + ∑ 𝑦𝑖
𝑛
𝑖=1 )

}

(𝑛+𝜇)

                                                                                                             (31) 

Similarly, it is possible to find the standard Bayes method estimator for the exponential distribution reliability 

function by using the entropy loss function through the equations (3), (17) and (30) as follows:  

𝑅̂(𝑦)𝐵𝐸 = [𝐸{ 𝑅(𝑦, 𝛼)
−1 | 𝑦}]−1 = { ∫{𝑅(𝑦, 𝛼)}−1

∀𝛼

𝑃(𝛼|𝑦 )𝑑𝛼}

−1

 

𝑅̂(𝑦)𝐵𝐸 = {∫ (𝑒  
𝑦
𝛼) 

(𝜎 + ∑ 𝑦𝑖
𝑛
𝑖=1 )𝑛+𝜇

(𝑛 + 𝜇)
   𝛼−(𝑛+𝜇+1) 𝑒− 

(𝜎−𝑦+∑ 𝑦𝑖) 
𝑛
𝑖=1

𝛼  𝑑𝛼

∞

0

}

−1

 

𝑅̂(𝑦)𝐵𝐸 = {
(𝜎 + ∑ 𝑦𝑖

𝑛
𝑖=1 )𝑛+𝜇

(𝑛 + 𝜇)
∫   𝛼−(𝑛+𝜇+1) 𝑒− 

(𝜎−𝑦+∑ 𝑦𝑖) 
𝑛
𝑖=1

𝛼  𝑑𝛼

∞

0

}

−1

                                       

𝑅̂(𝑦)𝐵𝐸 = {
𝜎 + ∑ 𝑦𝑖

𝑛
𝑖=1

(𝜎 − 𝑦 + ∑ 𝑦𝑖
𝑛
𝑖=1 )

}

−(𝑛+𝜇)

                                                                                                        (32) 

 The standard Bayes method estimator for the Rayleigh distribution reliability function through the use of the 

square loss function could also be found through the equations (6), (24) and (28) as is shown below:   

𝑅̂2(𝑣)𝐵𝑆 = 𝐸{𝑅2(𝑣, 𝜔)|𝑉} = ∫𝑅2(𝑣) 𝑃(𝜔|𝑣 )𝑑𝜔 

 

∀𝜔

 

𝑅̂2(𝑣)𝐵𝑆 = ∫ 𝑒
−( 

𝑣 2

2𝜔2 
)
  

2  (
∑ 𝑣𝑖

2𝑛
𝑖=1 + 𝜎

2 )

2𝑛+𝜇
2

  𝑒
− 
𝜎+∑ 𝑣𝑖

2𝑛
𝑖=1
2𝜔2

   (
2𝑛 + μ
2 ) 𝜔(2𝑛+𝜇+1)

 𝑑𝜔

∞

0
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𝑅̂2(𝑣)𝐵𝑆 =

2(
∑ 𝑣𝑖

2𝑛
𝑖=1 + 𝜎

2 )

2𝑛+𝜇
2

  (
2𝑛 + μ
2 ) 

 ∫   𝜔−(2𝑛+𝜇+1)  𝑒
− 
𝑣 2+𝜎+∑ 𝑣𝑖

2𝑛
𝑖=1

2𝜔2     𝑑𝜔

∞

0

 

To solve the integration above,  some conversions can be applied based on [4],  so we obtain:  

𝑅̂2(𝑣)𝐵𝑆 =

 (
𝜎 + ∑ 𝑣𝑖

2𝑛
𝑖=1  
𝑣2

)

2𝑛+𝜇
2

(
𝜎 + ∑ 𝑣𝑖

2𝑛
𝑖=1  
𝑣2

+ 1)

2𝑛+𝜇
2

          

𝑅̂2(𝑣)𝐵𝑆 = (1 +
𝑣2

𝜎 + ∑ 𝑣𝑖
2𝑛

𝑖=1

)

− 
2𝑛+𝜇
2

                                                                                                           (33)  

Through equations (6), (24), and (30) it is possible to find the standard Bayes method estimator for the Rayleigh 

distribution of the reliability function by applying the Entropy loss function as follows:  

𝑅̂2(𝑣)𝐵𝐸 = [𝐸{ 𝑅2(𝑣, 𝜔)
−1 | 𝑉}]−1 = { ∫{𝑅2(𝑣, 𝜔)}−1

 

∀𝜔

𝑃(𝜔|𝑣 )𝑑𝜔}

−1

 

𝑅̂2(𝑣)𝐵𝐸 =

{
 
 

 
 

∫ 𝑒
−( 

𝑣 2

2𝜔2 
)
  

2  (
∑ 𝑣𝑖

2𝑛
𝑖=1 + 𝜎

2 )

2𝑛+𝜇
2

  𝑒
− 
𝜎+∑ 𝑣𝑖

2𝑛
𝑖=1

2𝜔2

   (
2𝑛 + μ
2

) 𝜔(2𝑛+𝜇+1)

∞

0

  𝑑𝜔

}
 
 

 
 
−1

 

The above integration is solved by carrying out conversions so we get: 

𝑅̂2(𝑣)𝐵𝐸 = (1 −
𝑣2

𝜎 + ∑ 𝑣𝑖
2𝑛

𝑖=1

)

 
2𝑛+𝜇
2

                                                                                                           (34) 

4. Reliability systems 

       The reliability function is defined as the likelihood of having the system working properly after z period of 

time. It could also be defined as the possibility of the system unfailing throughout the period of [0, 𝑧]. The 

system is composed of a number of components and its importance lies in the nature of the relationships 

connecting those components, and it is upon the nature of those connections that the system is identified. 

Consequently, it is necessary to know the behavior of those components and the way they influence the overall 

behavior of the system eventually. The studies in [2, 12], have considered the reliability systems which divided 

into the following:  

       1. The Series System: The components making up this system are serial-connected to each other so the 

failure of any component leads to the failure and hence the stoppage of the entire system. In other words, if a 

system is made up of 𝑛 of components (machines) then its reliability is mathematically expressed as follows:  

𝑅𝑠(𝑧) = 𝑅1(𝑧). 𝑅2(𝑧)…𝑅𝑛(𝑧)∏𝑅𝑖(𝑧)

𝑛

𝑖=1

              , 𝑖 = 1,2,… ,𝑚                             (35) 

       2. The Parallel System: It is a system where its components are connected parallel to each other so if any 

of those components gets faulty, the system would still work and would not fail. The parallel system could be 

mathematically expressed as follows:  

𝑅𝑝(𝑡) = 1 −∏[1 − 𝑅𝑖(𝑧)]

𝑛

𝑖=1

                                                                                                     (36) 

       3. The Hybrid System: It is a system made up of many partial systems, with each having many components 

within. Now when a system is composed of a number of partial systems, its components could be linked to each 

other serial or parallel and then within each of the partial systems we could also see components linked serials 

or parallel. This research would be dealing with the Hybrid parallel-series system.   
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4.1. The hybrid parallel-series system 

This kind of hybrid system is made of  𝑛  of partial systems linked serial to one another, and then within each 

partial system there are 𝑚 partial systems that are linked to one another parallel. In this way, the system would 

still function even if there is only one component working, Whereas, the entire system would fail if one partial 

system stops working. In [1], the reliability function of the system was defined with 𝑛 partial systems linked 

serially according to the following formula:  

𝑅(𝑧) = 𝑃𝑟{φ (Z) > 𝑧} 
Since φ (Z): represents a function identified by random time variables within the components of the system.  

Hence:   

𝑅(𝑧) = 𝑃𝑟(𝑍1 > 𝑧  , 𝑍2 > 𝑧 , … , 𝑍𝑚 > 𝑧 ) 
If the partial systems are independent then:  

𝑅(𝑧) = 𝑃𝑟(𝑍1 > 𝑧) 𝑃𝑟( 𝑍2 > 𝑧 ) …  𝑃𝑟(𝑍𝑛 > 𝑧) 

𝑅(𝑧) = [𝑅1(𝑧) 𝑅2(𝑧)… 𝑅𝑛(𝑧)] =  ∏ 𝑅𝑖  (𝑧)
𝑛

𝑖=1
                                                              (37) 

Since 𝑅𝑖(𝑧) represents the reliability function of the partial system 𝑖 and is calculated as below if then systems 

are independent and symmetrical:  

𝑅𝑖(𝑧)  = 1 −  𝑃𝑟 (𝑍𝑗  ≤  𝑧)  , ∀𝑗  =   1 , 2 , … ,𝑚 

𝑅𝑖(𝑧)   =   1 −   𝑃𝑟 (𝑍𝑖1  ≤  𝑧 , 𝑍𝑖2  ≤  𝑧 ….  𝑍𝑖𝑚  ≤  𝑧 ) 
𝑅𝑖(𝑧) = 1 − [𝑃𝑟 (𝑍𝑖1  ≤  𝑧)  . 𝑃𝑟 ( 𝑍𝑖2  ≤  𝑧 ).  …  . 𝑃𝑟 (𝑍𝑖𝑚  ≤  𝑧)] 
𝑅𝑖(𝑧) =  1   − [{1 − 𝑅𝑖1(𝑧)} .  {1 − 𝑅𝑖2(𝑧)}.  …   . {1 − 𝑅𝑖𝑚(𝑧)}] 

𝑅𝑖(𝑧) = 1 −∏ [{1 − 𝑅𝑖𝑗(𝑧)} ]
𝑚

𝑗=1
                                                                                        (38) 

       Since 𝑅𝑖𝑗 represents the reliability function of the component  𝑗 that is connected parallel within the 

partial system 𝑖 . 
       Accordingly, if the system is made of two partial systems serially connected to each other and if each partial 

system is made of two components where the time variable in the first component is based on the exponential 

distribution for the parameter 𝛼 and the second component following the Pareto distribution for the parameter 

𝜔 , then the reliability function of each component within the partial system would be identified according to 

the equations (3) and (6) respectively, and the reliability function for the partial system 𝑖 according to the 

equation (38) would be as follows:   

𝑅𝑖(𝑧) =  [1 − {(1 − 𝑒
− 
𝑦
𝛼) (1 − 𝑒

−
𝑣2

2𝜔2 )}]                                                                      (39) 

       Similarly, the reliability function for the hybrid parallel-series system according to the equation (37) 

would be:  

𝑅(𝑧) =∏  
𝑛

𝑖=1
[1  − ∏  

𝑚

𝑗=1
{1 −   𝑅𝑖𝑗(𝑧)}]     

𝑅(𝑧) =∏  
2

𝑖=1
[1 − {(1 − 𝑅𝑖1(𝑧) ) (1 − 𝑅𝑖2(𝑧))}] 

𝑅(𝑧) = [1 − {(1 −  𝑅1(𝑧)) (1 − 𝑅2(𝑧))}]
2
                                                                       (40) 

4.2. Maximum likelihood method estimator for the reliability function of the hybrid parallel – series 

system 

The reliability function for the hybrid parallel-series system is estimated by means of the maximum likelihood 

method by substituting equations (10) and (13) into equation (40), so we get:  

𝑅̂(𝑍)𝑀𝐿 = [1 − {(1 − 𝑒
− 
𝑦 ∑ 𝑦𝑖

𝑛
𝑖=1
𝑛

  ) (1 − 𝑒
− 

𝑛 𝑣 2

∑ 𝑣𝑖
2𝑛

𝑖=1 )}]

2

                                                (41) 

4.3. The Standard Bayes Method Estimator for the Reliability Function of Hybrid Parallel-Series 

System 

Based on the Bayes method and the square loss function, we obtain the reliability function estimator of the 

hybrid parallel-series system by substituting the equations (31) and (33) into the equation (40) as follows:  
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𝑅̂(𝑍)𝐵𝑆 = [1 −

{
 

 
{1 − {

𝜎 + ∑ 𝑦𝑖
𝑛
𝑖=1

(𝜎 + 𝑦 + ∑ 𝑦𝑖
𝑛
𝑖=1 )

}

(𝑛+𝜇)

} {1 − (1 +
𝑣2

𝜎 + ∑ 𝑣𝑖
2𝑛

𝑖=1

)

− 
2𝑛+𝜇
2

}

}
 

 
]

2

    (42) 

Based on Bayes method and the Entropy loss function, we obtain the estimator of the reliability function of 

the hybrid parallel-series system by substituting the equations (32) and (34) into the equation (40) as follows:  

𝑅̂(𝑍)𝐵𝐸 = [1 −

{
 

 
{1 − (

𝜎 + ∑ 𝑦𝑖
𝑛
𝑖=1

(𝜎 − 𝑦 + ∑ 𝑦𝑖
𝑛
𝑖=1 )

)

−(𝑛+𝜇)

} {1 − (1 −
𝑣2

𝜎 + ∑ 𝑣𝑖
2𝑛

𝑖=1

)

 
2𝑛+𝜇
2

}

}
 

 
]

2

    (43) 

 

5. Experimental sides 

In this section, relying on the R.3.5.1 program, the Monte Carlo Simulation experiments were employed in 

estimating the reliability function of the hybrid parallel-series system as per the following steps reported in [13, 

14]:  

1. Selecting the default values for the exponential distribution parameter and the Rayleigh distribution 

parameter as well as for the parameters of the conjugate prior as is shown in the table 1 below:  

Table 1. Different Simulation Experiments 

𝜎 𝜇 𝜔 𝛼 Experiment 

2 2 2 2 1 

5 2 5 5 2 

3 2 5 2 3 

3 2 2 5 4 

 

2. Selecting the sizes of the default samples of the four components (10,25,50,100), in addition to selecting five 

times of running the hybrid parallel-series system that are Z=1,2,3,4,5 ,  with the recurrence of experiments 

being  𝐵 = 1000. 

3. Generating the random variables 𝑦𝑖 , 𝑣𝑖 , 𝑖 = 1,2,3,4 that follow the exponential distribution and the Rayleigh 

distribution respectively, and that according to the values of the parameters default in step 1 , as well as 

generating the variables that follow the inverted Gamma distribution which in turn represents the natural 

 conjugate prior by  depending on the Inverse Transformation Method. 

4. Estimating the reliability function of the hybrid parallel-series system according to the methods, equations 

and formulas mentioned in the theoretical side of the study, since 

𝑅̂(𝑧) =  
 1 

𝐵
 ∑ 𝑅̂𝑏(𝑧)

𝐵

𝑏=1

                                                                                                                 (44) 

Also, estimating the Mean Square Error (MSE) for those estimators as follows:  

𝑀𝑆𝐸[𝑅̂(𝑧)] =
 1 

𝐵
 ∑[𝑅̂𝑏(𝑧) − 𝑅 (𝑧)]

2
                                                                                  (45)

𝐵

𝑏=1

 

5.1. Simulation result 

Through the results of the simulation experiments aimed at finding and comparing the reliability function of 

the hybrid parallel-series system that were gained through the application of the maximum likelihood method, 

and the standard Bayes method  obtained  by the Square Loss function and the Entropy function shown in 

tables 2-5 , the following became evident:  

1- It was shown  by the estimated values of the reliability function of the hybrid parallel-series system that the 

estimated values of the standard Bayes method through the Entropy Loss function 𝑅̂𝐵𝐸  was closest to the default 

values compared to the standard Bayes method via the square loss function 𝑅̂𝐵𝑆 and the maximum likelihood 

method 𝑅̂𝑀𝐿𝐸  at sample sizes of (10,25,50). Whereas, the maximum likelihood method 𝑅̂𝑀𝐿𝐸 was excelled on 

the Bayes standard method by virtue of the two loss functions 𝑅̂𝐵𝑆,𝑅̂𝐵𝐸  at a sample size of 100 , noting that the 

estimated values are close to the default values ,as the sample size increases for all methods.  
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2- At sample sizes of (10, 25, 50), the estimated values of the means square error (𝑀𝑆𝐸)for the reliability 

function of  the hybrid parallel-series system under the Bayes standard method and through the Entropy Loss 

function 𝑅̂𝐵𝐸 were the least, followed by the valued of Bayes standard method through the square loss 

function 𝑅̂𝐵𝑆 which were followed by the values pertinent to the maximum likelihood method    
𝑅̂𝑀𝐿𝐸 . Whereas, the estimated values of the means square error (𝑀𝑆𝐸) of the maximum likelihood method 

𝑅̂𝑀𝐿𝐸 were less compared to the Bayes standard method at a sample size of 100.  

3- When the default values of the parameters of the exponential distribution and of the Rayleigh distribution are 

different then the estimated values for the reliability function of the hybrid parallel-series system are far from 

the default values compared to the estimated values obtained in case the parameters of the two distributions are 

equal. This case holds true to the estimated value of the means square error which get less when the default 

parameters of the two distributions are equal.  

 

 

Table 2. Estimated values of the reliability function and means square error for the hybrid system(𝛼 = 2,𝜔 = 2) 
(𝛼,𝜔) 𝑛 𝑧 𝑅𝐸𝐴𝐿 𝑅̂𝑀𝐿𝐸 𝑀𝑆𝐸 𝑅̂𝐵𝑆 𝑀𝑆𝐸 𝑅̂𝐵𝐸 𝑀𝑆𝐸 

(2,2) 

10 

1 0.909669838 0.941318959 0.001252084 0.948461596 0.001881001 0.957470515 0.002856131 

2 0.564421549 0.682587923 0.014213709 0.717833218 0.02391134 0.753137559 0.036184959 

3 0.225950845 0.370816088 0.021236355 0.42893185 0.041577489 0.474156015 0.062177033 

4 0.063683009 0.170477545 0.01165549 0.225830407 0.026667979 0.268165233 0.042384206 

5 0.014985523 0.078202474 0.0042468 0.11775622 0.010938016 0.158801926 0.021254384 

 

25 

1 0.909669838 0.928493617 0.000442918 0.936634969 0.000908898 0.949812273 0.002014269 

2 0.564421549 0.630305472 0.004429275 0.664417465 0.010180963 0.718428527 0.024121003 

3 0.225950845 0.300222164 0.005604813 0.347051781 0.014847216 0.420176619 0.038126505 

4 0.063683009 0.112709547 0.002492185 0.149943271 0.007622612 0.212972501 0.022690206 

5 0.014985523 0.040189808 0.00072384 0.062679429 0.002456488 0.109588718 0.009352618 

 

50 

1 0.909669838 0.92098359 0.000160001 0.923423111 0.000236441 0.938026041 0.001005093 

2 0.564421549 0.577570609 0.000204898 0.612445505 0.002353588 0.66842314 0.011017349 

3 0.225950845 0.242484646 0.000305367 0.283438743 0.003352147 0.352722202 0.016271996 

4 0.063683009 0.07738521 0.000219751 0.105100463 0.001762694 0.158272682 0.009148225 

5 0.014985523 0.023324842 0.000101544 0.037880986 0.00057149 0.072457137 0.003504005 

 

100 

1 0.909669838 0.912116149 7.48055E-06 0.921954075 0.000188628 0.936660558 0.000910624 

2 0.564421549 0.572142919 6.11157E-05 0.608781258 0.002005509 0.666692515 0.010641475 

3 0.225950845 0.245289449 0.000375478 0.288498498 0.003949935 0.36304446 0.018976784 

4 0.063683009 0.087807062 0.000583466 0.118762496 0.003071475 0.180253605 0.013770828 

5 0.014985523 0.033108869 0.000329952 0.051697124 0.001385467 0.095664762 0.006691264 

          

 

Table 2 above showed that at sample sizes (10,25,50,100), 𝑅̂𝑀𝐿𝐸 was closest to the default values  from  𝑅̂𝐵𝑆 , 

𝑅̂𝐵𝐸 . Also, it is generally observed from table 2 at sample sizes (10,25,50,100) that the estimated values of  

MSE for  𝑅̂𝑀𝐿𝐸 were the least followed by the estimated values of  MSE for 𝑅̂𝐵𝑆 and then the estimated values 

for MSE of  𝑅̂𝐵𝐸 .      

 

Table 3. Estimated values of the reliability function and mean square error for the hybrid system (𝛼 = 5,𝜔 = 5) 
(𝛼,𝜔) 𝑛 𝑧 𝑅𝐸𝐴𝐿 𝑅̂𝑀𝐿𝐸 𝑀𝑆𝐸 𝑅̂𝐵𝑆 𝑀𝑆𝐸 𝑅̂𝐵𝐸 𝑀𝑆𝐸 

(5,5) 

10 

1 0.99283414 0.952092217 0.00207488 0.960532214 0.001304268 0.962215798 0.001171854 

2 0.949948472 0.814202015 0.018842077 0.822827422 0.016420615 0.824139603 0.016062242 

3 0.856875754 0.629096272 0.052298468 0.635638961 0.049206572 0.63086061 0.051317216 

4 0.721137594 0.432847234 0.083345702 0.446912095 0.075460478 0.438657992 0.080209702 

5 0.564421549 0.264740133 0.090043322 0.287360098 0.077023901 0.275942731 0.083635005 

 

25 

1 0.99283414 0.9613301 0.001240631 0.977433088 0.000296491 0.968073877 0.000766338 

2 0.949948472 0.848961441 0.010446506 0.877317105 0.005334614 0.854772823 0.009211672 

3 0.856875754 0.691465812 0.027608575 0.716472826 0.01977228 0.693005581 0.027006701 

4 0.721137594 0.517454053 0.041640253 0.53639775 0.034188108 0.518957657 0.041124853 

5 0.564421549 0.355215702 0.043920354 0.370558645 0.037642124 0.3588332 0.042514696 
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50 

1 0.99283414 0.965945928 0.00090372 0.996353417 1.54816E-05 0.966183892 0.000887795 

2 0.949948472 0.852498256 0.009677288 0.97315125 0.000541465 0.85286811 0.009602156 

3 0.856875754 0.693234848 0.02695909 0.918858621 0.003844972 0.693815899 0.026766075 

4 0.721137594 0.520266282 0.040530028 0.832474084 0.01239891 0.521407777 0.040069559 

5 0.564421549 0.360061273 0.041943867 0.722260819 0.024916331 0.361939826 0.041176407 

 

100 

1 0.99283414 0.99461812 3.97823E-06 0.989334745 1.53072E-05 0.981203347 0.000169094 

2 0.949948472 0.961184152 0.000127036 0.928374343 0.000468504 0.887527908 0.003930146 

3 0.856875754 0.885639016 0.000828121 0.804082346 0.002790205 0.722611271 0.01806077 

4 0.721137594 0.770886583 0.002475758 0.636213191 0.007215216 0.528900605 0.036988879 

5 0.564421549 0.632749054 0.004669443 0.459135289 0.011088258 0.349314028 0.046305064 

 

 

From Table 3, it is generally observed that at sample sizes (10,25,50), 𝑅̂𝐵𝑆 was closest to the default values 

compared to  𝑅̂𝐵𝐸 , 𝑅̂𝑀𝐿𝐸 , whereas at sample size 100 , the  𝑅̂𝑀𝐿𝐸  was closest to the default values from 𝑅̂𝐵𝑆 , 
𝑅̂𝐵𝐸  . Also from table 3 it is observed that at sample sizes (10,25,50),  the estimated values of  MSE for 𝑅̂𝐵𝑆  
were the least followed by the estimated values of  MSE for  𝑅̂𝐵𝐸  and then the estimated values of  MSE for 

 𝑅̂𝑀𝐿𝐸 , while at sample size 100 the estimated values of  MSE for  𝑅̂𝑀𝐿𝐸 were the least followed by 𝑅̂𝐵𝑆 and 

then 𝑅̂𝐵𝐸 .       

    

Table 4. Estimated values of the reliability function and mean square error for the hybrid system (𝛼 = 2,𝜔 = 5) 
(𝛼,𝜔) 𝑛 𝑧 𝑅𝐸𝐴𝐿 𝑅̂𝑀𝐿𝐸 𝑀𝑆𝐸 𝑅̂𝐵𝑆 𝑀𝑆𝐸 𝑅̂𝐵𝐸 𝑀𝑆𝐸 

(2,5) 

10 

1 0.957854281 0.949816621 0.001501788 0.951178602 0.001386085 0.779340587 0.039833924 

2 0.757389099 0.812956424 0.00880231 0.813961302 0.008594868 0.35845319 0.167116644 

3 0.483429647 0.625641211 0.018468384 0.629070942 0.017532428 0.106010182 0.150412237 

4 0.274423207 0.431064684 0.023230173 0.438656219 0.020965553 0.02168032 0.071845751 

5 0.156541202 0.264245396 0.020995071 0.275942634 0.017743306 0.00333797 0.031438015 

 

25 

1 0.957854281 0.960215227 0.000735869 0.968834415 0.000305913 0.960231198 0.000734901 

2 0.757389099 0.848769312 0.003327361 0.855976055 0.002480485 0.848997062 0.003301532 

3 0.483429647 0.691451118 0.004905265 0.693760952 0.004505949 0.692388445 0.004776638 

4 0.274423207 0.518956852 0.004183714 0.521175054 0.00390658 0.517768109 0.004250187 

5 0.156541202 0.358833164 0.002574589 0.362571007 0.002220048 0.366444274 0.002850185 

 

50 

1 0.957854281 0.973464652 0.000151625 0.973469981 0.000151478 0.970266456 0.00025247 

2 0.757389099 0.865964972 0.001566768 0.866066214 0.001558812 0.859058198 0.002176097 

3 0.483429647 0.703263063 0.003298388 0.703715498 0.003246834 0.697613319 0.003996434 

4 0.274423207 0.525419151 0.003287478 0.526517942 0.003163237 0.52298039 0.003591962 

5 0.156541202 0.362194074 0.00213786 0.36406203 0.001969812 0.355317194 0.002847415 

 

100 

1 0.957854281 0.983114608 9.75506E-06 0.988533131 2.05523E-05 0.979997128 2.51008E-05 

2 0.757389099 0.89615242 0.000241066 0.923837493 0.000352867 0.88249255 0.000518945 

3 0.483429647 0.793912219 0.001125167 0.738040562 0.001144921 0.714476411 0.002116756 

4 0.274423207 0.621234864 0.001505226 0.547229111 0.002349384 0.520505249 0.003847207 

5 0.156541202 0.442110733 0.001160707 0.362455842 0.002134063 0.34290622 0.004255506 

 

 

In Table 4, it is generally observed that  𝑅̂𝑀𝐿𝐸 was the closest to the default values from  𝑅̂𝐵𝑆 , 𝑅̂𝐵𝐸 at sample 

sizes (10,25,50), whereas 𝑅̂𝐵𝐸 was closest to the default values  at sample size 100 . As for the estimated values 

of  MSE , it can be seen from table 4 at sample sizes (10,25,50) that the estimated values of MSE for 𝑅̂𝐵𝑆 were 

the least followed by the estimated values of  MSE for 𝑅̂𝑀𝐿𝐸 and then 𝑅̂𝐵𝐸 , while the estimated values of  MSE 

for 𝑅̂𝑀𝐿𝐸were the least at sample size of 100. 
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Table 5. Estimated values of the reliability function and mean square error for the hybrid system (𝛼 = 5,𝜔 = 2) 
(𝛼, 𝜔) 𝑛 𝑧 𝑅𝐸𝐴𝐿 𝑅̂𝑀𝐿𝐸 𝑀𝑆𝐸 𝑅̂𝐵𝑆 𝑀𝑆𝐸 𝑅̂𝐵𝐸 𝑀𝑆𝐸 

(5,2) 

10 

1 0.984478273 0.863161025 0.011208516 0.890306842 0.005703321 0.879624925 0.00764979 

2 0.905162458 0.47105083 0.083519563 0.51181371 0.061447936 0.494671778 0.071262094 

3 0.760430034 0.13873677 0.120343137 0.186736721 0.089167356 0.194005069 0.086008289 

4 0.582490626 0.022586312 0.064951779 0.048449807 0.052204642 0.052905265 0.051311902 

5 0.408101967 0.0024144 0.025285029 0.010263758 0.022537755 0.010026261 0.023708331 

 

25 

1 0.984478273 0.868953969 0.009879082 0.920316968 0.001761312 0.903238967 0.003728541 

2 0.905162458 0.45521696 0.093283818 0.60207179 0.024475729 0.541119258 0.047518352 

3 0.760430034 0.137875218 0.12138368 0.269784174 0.04599665 0.200847189 0.080598553 

4 0.582490626 0.025405204 0.063985782 0.092774137 0.033348647 0.050166737 0.051036672 

5 0.408101967 0.003076669 0.025527179 0.029077224 0.016599328 0.010345466 0.022118901 

 

50 

1 0.984478273 0.93030517 0.000948692 0.931362518 0.000877267 0.93031654 0.000947909 

2 0.905162458 0.637851521 0.014478971 0.643016198 0.013256614 0.639087601 0.014184826 

3 0.760430034 0.313386159 0.029104526 0.321395638 0.026430473 0.317341862 0.027774734 

4 0.582490626 0.126836595 0.021971546 0.133442659 0.020050968 0.131367999 0.020654374 

5 0.408101967 0.051210655 0.011284262 0.055036098 0.010478739 0.05435012 0.010632599 

 

100 

1 0.984478273 0.945680515 0.000185251 0.943321104 0.000264017 0.938840942 0.000451884 

2 0.905162458 0.70651293 0.002625435 0.696438394 0.003767792 0.673952533 0.007052037 

3 0.760430034 0.421748774 0.00384158 0.407119547 0.005876035 0.364141612 0.014320012 

4 0.582490626 0.235052528 0.0015871 0.220822526 0.002925836 0.169912249 0.011012917 

5 0.408101967 0.138894285 0.000348464 0.126747601 0.000940462 0.080429833 0.005883317 

 

 

Table 5 depicted  that at sample size (10,25,50), 𝑅̂𝐵𝑆 were closest to the default values compared to 𝑅̂𝐵𝐸, 𝑅̂𝑀𝐿𝐸 

, while 𝑅̂𝑀𝐿𝐸 was closest at sample size 100 , also from table5 it was found that at sample sizes (10,25,50), the 

estimated values of  MSE for 𝑅̂𝐵𝑆 were the least followed by the estimated values of  MSE for 𝑅̂𝐵𝐸 and then the 

estimated values of  MSE for 𝑅̂𝑀𝐿𝐸 ,whereas at sample size 100 the estimated values of  MSE for 𝑅̂𝑀𝐿𝐸 were 

the least. 
 

6. Applications 

The State Company for Vegetable Oils Industry was chosen to collect the data related to the research, 

specifically the soap section where "De Lux" soap is made and where the production process passes through the 

five stages:  saponification, color mixing, cutting, printing -wrapping and packing. The time of running the two 

machines (1,3) were registered starting from the cutting stage as well as the time of running machines (2,4) that 

involved the printing - wrapping stage. All machines were made in Italy in 2007. The connection system linking 

those machines was a hybrid parallel-series asymmetrical-component one. The study included the data available 

in the company's records representing the times of running the four machines covering the period from June 5th 

2017 to September 5th 2017, with excluding the stoppages occurred for maintenance purposes, and with an 

average of a daily working hours of 8. The working hours between a faulty-driven stoppage and the next are 

shown (in hours) in Table 6. Working hours belonging to old periods were collected as well and are presented 

in Table 7. 

Table 6.  Times of running the soap producing machines (in hours) 
Machine 

obs 
Machine 

 obs 
4 3 2 1 4 3 2 1 

0.4 6.31 1.25 6.16 13 13.03 4.24 3.86 26.4 1 
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3.5 5.34 0.12 9.29 14 1.57 8.62 6.16 1 2 

0.85 7.54 1.41 8.23 15 0.14 4.12 6.16 0.3 3 

4.5 6.38 3.77 3.06 16 0.61 0.43 5.48 2.7 4 

5.4 1.71 6.28 7.32 17 2.14 7.87 1.58 16.5 5 

5.2 1.44 1.73 4.28 18 1.41 10.07 0.64 12 6 

0.2 1.26 0.74 1.15 19 1.98 3.96 5.06 1.5 7 

2.5 3.62 2.82 9.4 20 1.03 8.92 2.4 3.1 8 

8.5 5.81 0.71 15.54 21 1.23 1.72 3.79 2.2 9 

11.6 1.72 0.41 8.41 22 1.15 4.91 3.55 0.9 10 

4 2.5 2.19 4.2 23 3.09 7.55 2.84 6 11 

6.8 3.69 0.79 4.49 24 0.02 9.64 5.3 2.2 12 

 

Table 7. Times of running the soap producing machines (in hours) for previous period 

Machine 4 obs Machine 3 obs Machine 2 obs Machine 1 obs 

3.73 1 14.56 1 1.92 1 6.11 1 

0.03 2 11.17 2 2.13 2 16.15 2 

10 3 1.25 3 8.16 3 1.71 3 

9.84 4 4 4 3.04 4 0.1 4 

3.77 5 19.8 5 4.12 5 2.66 5 

8.37 6 5.37 6 2.92 6 5.78 6 

0.95 7 2.45 7 1.07 7 0.57 7 

0.07 8 0.6 8 4.56 8 0.73 8 

1.88 9 2.27 9 0.15 9 1.87 9 

2.57 10 31.22 10 2.35 10 0.22 10 

9.1 11 5.42 11 8.41 11 0.47 11 

1.85 12 0.07 12 2.14 12 1.75 12 

 

The goodness of fit test was carried out to know the distribution of the previous as well as the current data 

related to the running hours of the four machines and that depending on the Kolmogorov Smirnov Test and that 

at a significance level of (0.05) ,  and the hypotheses wear as follow:   

Data of first and third machines following the exponential distribution: H0 

Data of second and fourth machines following the Rayleigh distribution: H0 

Previous data for the four machines following the Inverse Gamma distribution: H0 

The results were as shown in tables (8) and (9) below:  

Table 8. K-S tests on machines running data 

Machine 1 2 3 4 

K- S 0.0793322 0.138382 0.154076 0.1436 

P-Value 0.99817 0.747588 0.619063 0.705408 
 

Table 9. K-S tests on previous machine-running data 

Machine 1 2 3 4 

K- S 0.114 0.15743 0.7583 0.18726 

P-Value 0.9925 0.8831 0.18202 0.7283 
 

The P-Value shows the validity of the null hypotheses above since they are greater than the level of significance, 

which means that the working-hours data of the first and third machines followed the exponential distribution 

and that the second and fourth machines followed the Rayleigh distribution. The same was true with the running 

hours data belonging to previous periods as they followed the Inverted Gamma distribution.  

Now we will calculate the reliability function of the asymmetrical hybrid parallel-series system for the machine-

running times (in hours) during the two stages of cutting and printing - wrapping and that by applying the Bayes 

standard method through the Entropy Loss function via equation (43), noting that the values for the previous 



 PEN Vol. 8, No. 1, March 2020, pp.562-576 

575 

distribution parameters were (μ ≈ 2, σ ≈ 5) that were approximately found by means of the (R) program. The 

obtained results are shown in table (10) below:  

Table 10. Values of the reliability function of the hybrid system 

Z 𝑅̂(𝑍)𝐵𝐸 

1 0.979361 

2 0.867928 

3 0.66495 

4 0.43462 

5 0.242837 

6 0.117287 

7 0.049977 

8 0.019406 

9 0.007192 

10 0.002689 

 

6. Conclusions 

Through the results gained in both the experimental and applied sides, we can conclude the following:  

1- All the estimations for all the estimation methods used in estimating the reliability function of the hybrid 

parallel-series system were identical with the statistical theory. The greater the size of the sample the closer the 

estimated values of the function to the default values and the lesser the values of the estimated mean square 

error. Also, the values of the reliability function were diminishing over the time (Z).  

2-The Bayes Standard Method carried out through the Entropy Loss function excelled in estimating the 

reliability function of the parallel-series system when the sample size was small or medium. Whereas the 

Maximum Likelihood method was the best when the sample size was big.  

3-The values calculated for the reliability function of the hybrid system of the soap producing machines during 

the two stages of cutting and printing - wrapping indicate that the efficiency of those machines was declining 

over time despite their modernity. This could also be noticed by comparing the previous running times with the 

current ones for the four machines involved.  

4-The company lacks the new electronic and engineering systems needed to help in identifying the faults 

accumulatively. That was evident in the occurrence of the long stoppages of the majority of the machines and 

across all stages as we noticed.  
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