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ABSTRACT   

Lasso estimate as the posterior mode assuming that the parameter    has prior density as double 

exponential distribution [1]. In this paper, we proposed Scale Mixture of Normals mixing with Rayleigh 

(SMNR) density on their variances to represent the double exponential distribution. Hierarchical model 

formulation presented with Gibbs sampler under SMNR as alternative Bayesian analysis of minimization 

problem of classical lasso. We conducted two simulation examples to explore path solution of the Ridge, 

Lasso, Bayesian Lasso, and New Bayesian Lasso (R, L, BL, NBL) regression methods through the 

prediction accuracy using the bias of the estimates with different sample sizes, bias indicates that the lasso 

regression perform well, followed by the NBL. The Median Mean Absolute Deviations (MMAD) used to 

compared the perform of the regression methods using real data, MMAD indicates that the proposed 

method (NBL) perform better than the others.  
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1. Introduction 

The Bayes estimate of the parameters of linear regression through lasso method under constraint uses ℓ1 −

𝑛𝑜𝑟𝑚, ‖𝛽‖1 . The lasso estimator 𝛽̂  is the parameters estimate of the following linear regression model [1]: 

𝑦 = 𝑋𝛽 + 𝜖                                   (1) 

Where 𝑦 = (𝑦1, … , 𝑦𝑛, )´ is the vector of the centered response variable, 𝑋 𝑖𝑠 𝑛 × 𝑝 matrix of standardized 

predictors ( if they have different units ) , and 𝜖~𝑁(0, 𝜎2) As minimization problem, the Lasso method to 

estimate the parameter 𝛽 of model (1) by minimizing, 

𝐿(𝛽, 𝜆) = (ℓ2(𝑦 − 𝑋𝛽))2 + 𝜆‖𝛽‖1                   (2) 

Where ℓ2(. )  is the ℓ2 − norm, and λ ≥ 0 is the shrinkage parameter that decide the sparsity of β̂. β. Lasso 

estimates in (2) is the posterior mode when the prior distribution of the regression parameter distributed 

according to double exponential density [1]. The solution path of lasso is multi-sub function(piecewise)linear 

that defined on a sequence of λ and suggest that the solution path of λ following algorithm called Least Angle 

Regression (LAR) which implies that the posterior distribution of regression parameters is linearly for 

sequence interval of λ[λk, λk+1] [2]. Working of [1] motivate many authors to suggest new representations for 

the double exponential as prior density of regression coefficients. New Bayesian lasso considered through 

hierarchical model that represent the double exponential prior density as scale mixture of normal mixing with 

exponential distribution [3] which originally proposed in [4],  then the full joint Bayesian posterior 

distribution of regression parameter under conditional Laplace density is 

π(β, σ2 y⁄ )  ∝  π(σ2) (σ2)
−(n+p−1)

2  exp [−
1

2σ2
(y − Xβ)

´
(y − Xβ) − λ ∑|βj|

n

j=1

√σ2⁄ ]          (3) 
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The joint posterior (3) have a lasso estimate that consider as the posterior mode estimate, appreciation to [3] 

they state that the prior distribution of regression parameter must be conditioning on σ2 to guarantees the 

unimodality of the full posterior distribution. New Bayesian lasso proposed [5] based on new hierarchical 

formulation that use the following representation of double exponential density as scale mixture of uniform 

distribution mixing with 𝐺𝑎𝑚𝑚𝑎(2, 𝜆) 

𝜆

2
 𝑒−𝜆|𝑥| = ∫   

1

2𝑢

𝑢

−𝑢

 
𝜆2

Γ2
 𝑢2−1 𝑒𝜆𝑢 𝑑𝑢                           

Abbas [6]  proposed new representation of the hierarchical model based on double exponential density as non-

scale mixture of uniform mixing with standard exponential density, 

𝜆

2
 𝑒−𝜆|𝛽𝑗| = ∫   

,

𝑧𝑗>𝜆|𝛽𝑗|

 
𝜆

2
  𝑒−𝑧𝑗  𝑑𝑧𝑗,                           

In this paper, along similar lines of [4], [3], [5], and [6], we proposed a new hierarchical formulation of Bayes 

lasso that conjugate normal prior for the regression coefficients and independent Rayleigh density on their 

variances ,i.e., we proposed using double exponential density as Scale Mixture of Normal mixing with 

Rayleigh density on their variances (SMNR). In section 2 we introduced the SMNR as the Laplace prior 

distribution. Also, in section 3 , we presented new hierarchical model formulation of the Laplace as SMNR, 

and Gibbs sampler algorithm presented in section 4. Two examples studied and real data analysis are 

presented in section 5 and section 6. In section conclusions have provided . Appendix A include the proof of 

the SMNR. 

Following [3] our new full Bayesian analysis consider the conditional double exponential prior form as 

follows, 

𝜋(𝛽 𝜎2⁄ ) = ∏
𝜆

2𝜎2

𝑝

𝑗=1

 𝑒𝑥𝑝 [−
𝜆|𝛽𝑗|

𝜎2
] 

 

2. Scale mixture of normal distribution 

We construct new hierarchical model representation considering the double exponential prior density of the 

parameters as scale mixture of normal distribution mixing Rayleigh density. Following [7] and [8],generally 

the scale mixture of normals mixing with Rayleigh distribution g(σ)is , 

 

𝑓(𝑥) = ∫
1

𝜎

∞

0

∅ (
𝑥

𝜎
) 𝑔(𝜎)𝑑𝜎                         (4) 

 

which is symmetric about zero and unimodal function. Mathematically it is well known that, 

if z s⁄ ~N(μ = 0, s2) with s~Rayleigh(a), then z~Laplace (μ = 0, a), and based on (4) we can write 

 

1

2𝑎
exp [−

|𝑧|

𝑎
] = ∫

1

√2𝜋𝑠2
 𝑒−𝑧2 2𝑠2⁄  

𝑠

𝑎
 𝑒−𝑠2 2𝑎⁄  𝑑

∞

0

𝑠                 (5) 

 

Appendix A contain the proof of (5). Let a = σ2 λ⁄ , z = β, and s = σ√τ then (5) can be written as, 

 
1

2σ2 exp [−
λ|β|

σ2 ] = ∫
1

√2πσ2τ

∞

0
 exp {−

β2

2σ2τ
} 

λ

2
 e−λτ 2⁄  dτ              (6), 

 

The prior density (6) is conditioning on the σ2 which guarantees a unimodal posterior distribution, see [3] for 

more information. 

 

3. New hierarchical model formulation 

The new hierarchical model formulation of the full model under the new proposed scale mixture (6) defined as 

follows, 
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𝑦𝑛×1|𝑋, 𝛽, 𝜎~𝑁𝑛(𝑋𝛽, 𝜎2𝐼𝑛), 

𝛽𝑝×1|𝜎2, 𝜏1, … 𝜏𝑝~𝑁𝑝(0, 𝜎2𝐷𝜏), 

𝐷𝜏 = 𝑑𝑖𝑎𝑔(𝜏1, … 𝜏𝑝), 

𝜎2, 𝜏1, … 𝜏𝑝~𝜋(𝜎2)𝑑(𝜎2) ∏
𝜆

2

𝑝

𝑗=1

 𝑒−𝜆𝜏𝑗 2⁄   𝑑𝜏𝑗               (7) 

𝜎2, 𝜏1, … , 𝜏𝑗 > 0. We can reach the conditional prior π(β σ2⁄ ) in (7) after integrating out τ1, … , τj in (7). As 

well as, we use the prior density π(σ2) = 1 σ2⁄ , or any inverse gamma to maintain the conjugacy in the 

proposed scale mixture, see [3]. 

 

4. The Gibbs sampler and the full conditional distributions 

Gibbs sampler will implement the model (7) for Gibbs sampling the most useful algorithm of MCMC 

technique in Bayesian analysis which samples from the conditional distribution of a parameter given all the 

other parameters, see [9]. The construction of the hierarchical model is formulated such a way that there is full 

conditional distribution for each component of the estimate. Following [3], we can implement the model (7) 

and by using the following inverse gamma prior density on 

π(σ2) =
γa

Γa
 (σ2)−a−1 e−γ σ2⁄ ;   σ2, a, γ > 0 

Where 𝑎 and b are the hyper parameters , and as a, b → 0 the prior  π(σ2) will be proportional to (1 σ2⁄ )  The 

full joint density can be written as follows: 

𝑓(𝑦 𝛽, 𝜎2⁄ )𝜋(𝜎2) ∏(𝛽𝑗 𝜏𝑗⁄ , 𝜎2)

𝑝

𝑗=1

𝜋(𝜏𝑗) =
1

(2𝜋𝜎2)𝑛 2⁄
 𝑒

−
1

2𝜎2 (𝑦−𝑋𝛽)´(𝑦−𝑋𝛽)
  

𝜋(𝜎2)
γ𝑎

Γ𝑎
 (𝜎2)−𝑎−1𝑒−γ 𝜎2⁄  ∏

1

√2𝜋𝜎2𝜏𝑗

𝑝

𝑗=1

  𝑒−𝛽𝑗
2 2𝜎2⁄ 𝜆

2
 𝑒−𝜆𝜏𝑗 2⁄                  (8)  

Based on the full joint density, we can construct the following conditional distributions: 

 

4.1. The full conditional distribution for 𝛃 

Gibbs sampler technique need no more than an unnormalized posterior, so we have to eliminate all factors not 

involving the parameter β from (8) and the remaining part of the full joint density is proportional to that 

contains β, i.e., we are left with the following terms: 

−
1

2𝜎2
 (𝑦 − 𝑋𝛽)´(𝑦 − 𝑋𝛽) −

1

2𝜎2
 𝛽´ 𝐷𝜏

−1𝛽 

= −
1

2𝜎2
 [𝛽´(𝑋´𝑋)𝛽 − 2𝑦𝑋𝛽 + 𝑦´𝑦 + 𝛽´ 𝐷𝜏

−1𝛽]                  (9) 

−
1

2𝜎2
 [𝛽´(𝑋´𝑋 −  𝐷𝜏

−1)𝛽 − 2𝑦𝑋𝛽 + 𝑦´𝑦] 

Here, 𝑦 is the centered response variable and let  𝐶 = 𝑋´𝑋 −  𝐷𝜏
−1 , ,then (9) can be rewrite as, 

−
1

2𝜎2
 [𝛽´𝐶𝛽 − 2𝑦𝑋𝛽 + 𝑦´𝑦], 

Hence now we can rewrite the density of 𝛽  as the exponent of 
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−
1

2𝜎2
 (𝛽 − 𝐶−1𝑋´𝑦)

´
𝐶(𝛽 − 𝐶−1𝑋´𝑦), 

Recalling the multivariate normal distribution 𝑋~𝑁(𝜇, Σ) , then we can say that 𝛽  follows the multivariate 

normal density with mean 𝐶−1𝑋´𝑦 and variance 𝜎2𝐶−1, 

 

4.2. The full conditional distribution for 𝛔𝟐 

The Gibbs sampler distribution for 𝜎2 is generating from the full joint distribution (8) and involving only 𝜎2 

 

(𝜎2)−
𝑛−1

2
 −

𝑝
2

−(𝑎+1)  𝑒
[−

1
2𝜎2 (𝑦−𝑋𝛽)´(𝑦−𝑋𝛽)+

1
2𝜎2 𝛽´ 𝐷𝜏

−1𝛽+
γ

𝜎2]                  (10)
 

 

So, from (10) and the distribution pdf of inverse gamma, we can state that 𝜎2 is conditionally inverse gamma 

distribution, 

 

𝜎2 .⁄ ~𝐼𝑛𝑣𝑒𝑟𝑠𝑒_𝐺𝑎𝑚𝑚𝑎 (
𝑛−1

2
+

𝑝

2
+ 𝑎, (𝑦 − 𝑋𝛽)´(𝑦 − 𝑋𝛽) 2⁄ + 𝛽´ 𝐷𝜏

−1𝛽 2 + γ⁄ . 

 

4.3. The full conditional distribution for 𝛕 

The last variable that we have to sample in Gibbs sampler is the latent variable 𝜏𝑗. the Gibbs sampler 

distribution for 𝜏 is the part of (8) that includes only 𝜏𝑗 is 

(𝜏𝑗)−
1
2 𝑒𝑥𝑝 [−

1

2
(

𝛽𝑗
2

𝜎2 𝜏𝑗
+ 𝜆𝜏𝑗)]                                      (11) 

The Inverse Gaussian distribution (IG) is, 

𝑓(𝑥; 𝜇, 𝜆) = √ 
𝜆

2𝜋𝑥3
 𝑒𝑥𝑝 [−

𝜆(𝑥 − 𝜇)2

2𝜇2𝑥
] ; 𝑥 > 0, 

Based on the distribution of the reciprocal of an inverse Gaussian variable introduced by [10], then we can 

rewrite (11) in the view of the reciprocal of the reciprocal of the inverse Gaussian distribution as follows: 

 

(𝜏𝑗)−
3
2 exp (

𝛽𝑗
2

2𝜎2 𝜏𝑗
−

𝜆𝜏𝑗

2
) ∝ (𝜏𝑗)−

3
2 𝑒𝑥𝑝 [−

𝛽𝑗
2(

1
𝜏𝑗

− √𝜆𝜎2 𝛽2⁄ )

2𝜎2(1 𝜏⁄ )
] 

Then, we can say that 1 𝜏~𝐼𝐺(√
𝜆𝜎2

𝛽2 , 𝜆)⁄ , where 𝜆 is the shape parameter and √
𝜆𝜎2

𝛽2   is the mean (location) 

parameter. 

4.4. Choosing the regularization parameter 𝛌 

The regularization parameter 𝜆 can be estimate by using empirical Bayes which is given by maximizing the 

data marginal likelihood and use the Monte Carlo EM algorithm to complement the Gibbs sampler [3]. As 

well, they state that the distribution of prior λ is the following Gamma form, 

𝜋(𝜆) =
𝛿Υ

ΓΥ
 (𝜆)Υ−1 𝑒−𝛿𝜆;  𝜆, 𝛿Υ > 0,               (12) 

From the full joint density (12), the terms involving (𝜆) together with gamma prior (8) are, 
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∏ (
𝜆

2
  𝑒−

𝜆
2

𝜏𝑗) (𝜆)Υ−1𝑒−𝛿𝜆 =

𝑝

𝑗=1

𝜆𝑝+Υ−1 exp [−𝜆 (
1

2
∑ 𝜏𝑗 +

𝑝

𝑗=1

𝛿)] 

This is again the gamma distribution, i.e., 

𝜆~𝐺𝑎𝑚𝑚𝑎 (𝑝 + Υ,
1

2
∑ 𝜏𝑗 +

𝑝

𝑗=1

𝛿) , 

Thus, we updated the regularization parameter 𝜆 via the above gamma distribution. Summarizing, we have the 

following hierarchical model for implement the Gibbs sampler: 

 

𝑦|𝑋, 𝛽, 𝜎2~𝑁𝑛(𝑋𝛽, 𝜎2𝐼𝑛), 
𝛽|𝜏 𝜎2, ~𝑁((𝑋´𝑋 + 𝐷𝜏

−1)−1𝑋´𝑦, 𝜎2(𝑋´𝑋 + 𝐷𝜏
−1)−1), 

𝜏−1 𝜎2⁄ ~𝐼𝐺(√
𝜆𝜎2

𝛽2
, 𝜆), 

𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −  𝐺𝑎𝑚𝑚𝑎 (
𝑛 − 1

2
+

𝑝

2
+ 𝑎, (𝑦 − 𝑋𝛽)´(𝑦 − 𝑋𝛽) 2⁄

+ 𝛽´ 𝐷𝜏
−1𝛽 2 + γ⁄ ),                                                                                       (13) 

𝜆~𝐺𝑎𝑚𝑚𝑎 (𝑝 + Υ,
1

2
∑ 𝜏𝑗 +

𝑝
𝑗=1 𝛿). 

 

5. Simulation analysis 

Simulation study is performed based on (13) to support the proposed scale mixture of normals and to identify 

many scenarios in which the New Bayesian Lasso (NBL) preforms well. For simulated examples, we study 

estimation accuracy is conducted to assess the accuracy of the estimation of Lasso parameters through shown 

how the bias of the estimators effects the quality of estimated regression model. We compared between the 

bias of parameter estimators of NBL, Ridge (R), Lasso (L), and Bayesian Lasso (BL) by using the following 

formula, 

𝐵𝑖𝑎𝑠[𝛽̂𝑗(𝜃𝑖) − 𝛽𝑗
𝑡𝑟𝑢𝑒] 

As well as, we use the statistic (MMAD) to compare the performance of different regression models (RR, LR, 

BLR, and NBLR) by using the following formula, 

𝑀𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛[𝑚𝑒𝑎𝑛(|𝑋𝛽̂ − 𝑋𝛽𝑡𝑟𝑢𝑒|)] 

Here, 𝛽𝑡𝑟𝑢𝑒 is the vector of true parameter values. The generating process of data is as follows 

𝑦 = 𝑋𝛽 + 𝑒,                                    (14) 

Where 𝑋 is distributed from normal with mean zero and variance one, 𝑒~𝑁(0, 𝜎2). The correlation between 

predictors 𝑋𝑖  𝑎𝑛𝑑 𝑋𝑗  is 𝜌|𝑖−𝑗|, and the matrix of predictor variable observations are 𝑋~𝑁(0, Σ), ℎ𝑒𝑟𝑒 Σ𝑖𝑗 =

𝜌|𝑖−𝑗| Before carry out any regression model, we standarized the predictors values and centered the response 

variable values. The Bayesian lasso and the new Bayesian lasso estimates are the posterior means, we use the 

Gibbs sampler with (100) samples and the burn out samples number is (4000). In R package lars for lasso, we 

used the LARS algorithm proposed by [2] to select the penalty parameter with (k = 10)-fold cross validation, 

see [11] who state that the best choice for k is 10. 

 

Example 1 

In this example , we generate 50 datasets each with 20 observation from the true model (14), this example 

used by [1], here the true vector of parameters values is  

 =(3,1.5,0,0,2,0,0,0) with 0.5 = , 3 = . We focus on the prediction accuracy aspect of the estimate 

quality through calculate the bias of the estimates for the different regression methods (RR, LR, BLR, and 

NBLR) under different sample sizes (20,50,100). The simulation results with the different scenarios 

summarized in Table (1), the effects of increasing the samples size shows that the NBL gives the less bias of 

estimate. As well, the results in Table (2) shows that the lasso regression performs better than the other 
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methods based on the values of MMAD statistic, followed closely by NBL method, followed by BL method, 

and poorly perform of ridge method which has the highly bias in Table (1). 

Table 1: The bias of parameter estimates along the path solution of each method with different sample sizes 

N Methods 
Bias 𝛽̂1 Bias 𝛽̂2 Bias 𝛽̂3 Bias 𝛽̂4 Bias 𝛽̂5 

Bias   

𝛽̂6 
Bias 𝛽̂7 Bias 𝛽̂8 

20 RR 2.6060 1.1705 0.3306 0.4048 1.6632 0.3649 0.3355 0.3607 

LR 1.5183 0.3068 0.0959 0.2775 0.1647 0.2465 0.2232 0.3505 

BLR 2.4519 1.0145 0.3704 0.3498 1.3379 0.3773 0.4594 0.3783 

NBLR 1.0792 0.1989 0.0292 0.1879 0.1631 0.2458 0.1379 0.1912 

50 RR 2.6141 1.1175 0.2883 0.2964 1.6344 0.2835 0.4198 0.3217 

LR 0.5100 0.6866 0.2170 0.1835 0.6387 0.2304 0.3230 0.3122 

BLR 1.4645 0.7517 0.3685 0.3815 0.9347 0.2892 0.4236 0.4594 

NBLR 0.3558 0.2412 0.1706 0.0973 0.3964 0.1064 0.1692 0.2409 

100 RR 2.6048 1.1844 0.3673 0.3211 1.6308 0.3127 0.2995 0.3082 

LR 0.1854 0.2995 0.1845 0.2892 0.1939 0.2211 0.0767 0.1234 

BLR 0.7718 0.6267 0.5000 0.3084 0.6213 0.4109 0.3151 0.2490 

NBLR 0.1066 0.1146 0.1300 0.1577 0.1417 0.1853 0.0239 0.0814 

Table 2: Median Mean Absolute Deviation along each method with different sample sizes 

Methods 
MMAD 

N=20 N=50 N=100 

RR 4.2308 3.0917 3.3232 
LR 1.1963 0.7928 0.5108 
BLR 2.9015 1.0753 0.6859 
NBLR 2.3100 0.8905 0.5748 

Trace plot as convergence diagnose tool, indicates from Figure (3) that the MCMC samples of the posterior 

distribution of regression coefficients convergence to stationary distribution (the vector of true parameter 

values). Also, the trace plots Figure shows no flat bits and does not suffer from slow mixing. 

 

Figure 1. Trace plots of 1 8 −  of the Posterior parameter estimates 
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Figure 4 checks the distributions of the parameter estimates with sample sizes (20,50,100) respectively and it 

is clearly that the distribution of the parameter is fairly follow the normal distribution for each regression 

method.  

 

Figure 2. Histograms of parameter estimates 1 8 −
 distributions 

 

The boxplots from Figures 5,6,7 with different sample sizes (20,50,100) exhibits that the proposed NBL 

regression method does not suffer from the dispersion of the parameter estimates compared with the other 

methods, also we can see that the median is closely to the true parameter value dotted in the red horizontal 

line. 

 
Figure 3. Comparison of performance between different method along with 1 8 −  

and sample size 10 
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Figure 4. Comparison of performance between different method along with 1 8 −  

and sample size 50 

 

 
Figure 5. Comparison of performance between different method along with 1 8 −  

and sample size 100 
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Example 2 

Similar to example 1, we use  =(5,0,0,0,0,0,0,0), 0.5 = ,  2 = . Table 3 shows the bias of the estimates 

of the different methods with increasing of sample size, we can see the less bias attained in NBL. 

Consequently, the performance of the four methods improves. As well, Table 4 indicates that the less MMAD 

is in the proposed method NBL, followed by LR.  Figure 3 shows that the distributions of the parameter 

estimates with different sample sizes (20,50,100) follows normal distribution for each regression method. 

Trace plots in Fig.6 shows that the MCMC samples convergence to stationarity, which means the well mixing 

of The MCMC samples and the target distribution. Figures (7,8,9) shows the boxplots with different sample 

sizes (20,50,100), clearly that the proposed NBL regression method does not suffer from the variability of the 

parameter estimates compared with the other methods,  and clearly the median in the boxplot is closely to the 

true parameter value dotted in the red horizontal line. 

 

Table 3. The bias of parameter estimates along the path solution of each method 

with different sample sizes 

N Methods 

Bias 𝛽̂1 Bias 𝛽̂2 Bias 𝛽̂3 Bias 𝛽̂4 Bias 𝛽̂5 
Bias   

𝛽̂6 
Bias 𝛽̂7 Bias 𝛽̂8 

20 RR 
4.6403 0.1934 0.1918 0.1876 0.2098 0.1514 0.1897 0.1584 

LR 
0.1733 0.0406 0.2251 0.1176 0.1069 0.0302 0.1693 0.1210 

BLR 
2.7769 0.1829 0.0004 0.1634 0.3170 0.1152 0.3429 0.1317 

NBLR 
0.1021 0.0066 0.2570 0.0640 0.0834 0.0378 0.1380 0.0802 

50 RR 
4.6284 0.2140 0.2332 0.2768 0.1977 0.2117 0.2390 0.2523 

LR 
0.1329 0.0633 0.1021 0.0926 0.0904 0.0626 0.0324 0.1701 

BLR 
1.4222 0.1470 0.0934 0.2734 0.0829 0.1068 0.1723 0.2083 

NBLR 
0.0444 0.0289 0.0839 0.0503 0.0535 0.0458 0.0134 0.1296 

100 RR 
4.6411 0.1848 0.1810 0.2356 0.2116 0.2088 0.1818 0.1991 

LR 
0.1008 0.0370 0.0215 0.0398 0.0365 0.0531 0.0507 0.0614 

BLR 
0.6309 0.0256 0.0309 0.1115 0.1212 0.1081 0.0901 0.0660 

NBLR 
0.0265 0.0270 0.0082 0.0374 0.0070 0.0161 0.0449 0.0232 
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Table 4. Median Mean Absolute Deviation along each method with different sample sizes 

Methods 

MMAR 

N=20 N=50 N=100 

RR 2.5620 3.2542 2.8931 

LR 0.5401 0.5310 0.3813 

BLR 1.2383 0.7635 0.4009 

NBLR 0.483 0.466 0.2706 

 

 

Figure 6. Trace Plots of 1 8 −
of the Posterior parameter estimates 
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Figure 7. Histograms of parameter estimates 1 8 − distributions 

 

Figure 8. Comparison of performance between different method along with 1 8 −
and sample size 10 
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Figure 9. Comparison of performance between different method along with 

1 8 − and sample size 50 

 
Figure 10. Comparison of performance between different method along with 

1 8 −  and sample size 100 
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6. Analysis with Boston housing data 

In 1978 Harrison and Rubinfeld  study the relationship between the demand on clean air as response variable 

and 13 predictor variables; per capita crime rate by town (crim), proportion of residential land zoned for lots 

over 25,000 sq.ft(zn), proportion of non-retail business acres per town(indus), Charles River dummy variable 

(= 1 if tract bounds river; = 0 otherwise) (chas), nitric oxides concentration (parts per 110 million) (nox), 

average number of rooms per dwelling (rm), proportion of owner-occupied units built prior to 1940 (age), 

weighted distances to five Boston employment centers (dis), index of accessibility to radial highways (rad), 

full-value property-tax rate per USD 10,000 (tax), pupil-teacher ratio by town( ptratio, 
( )

2
1000 0.63B −

where B is the proportion of blacks by town (b), lower status of the population (1stat).These data collected in 

Boston state which contains 506 census area (observation). 

Since the  predictor variables have different measure units, we standardized their values and then centered the 

response variable values. The estimated penalty parameter    value is the posterior mean when the prior 

distribution is gamma with parameters  (a=1, b=0.1)  in Gibbs sampler algorithm, also we use (k=10) fold 

cross validation in classical lasso to select the regularization parameter, see [5]. We implement our proposed 

Bayesian conditional posterior distributions to estimate Lasso parameter in (1) and compared with (Ridge, 

Lasso, and Bayesian Lasso) regressions. Table (6) contains the estimates of 13 coefficients of the predictor 

variable and compared it with (Ridge, Lasso, and Bayesian Lasso) regressions, clearly the NBL is outperform 

better than RR,LR, and BL in terms of the sparsity, i.e., the NBL picks approximately (%53) of zeros 

coefficients (7) followed by the classical lasso. As well as, Table (7) contain the values of the Residual Mean 

Squares Error (RMSE) for regression methods (RR, LR, BL, and NBL) and exhibits than NBL performs the 

better than other regression models ,followed by LR. The data is available in R package MASS. 

 

Table 5. Standardized parameter estimates for RR, LR, BL, and NBL 

Methods crim zn indus chas nox rm age dis rad tax ptratio black lstat 

RR -0.030 0.010 -0.045 0.684 -2.219 0.867 -0.008 0.035 -0.024 -0.002 -0.187 0.003 -0.083 

LR -0.083 0.035  0.000 2.630 -14.686 3.963 0.000 -1.250 0.183 -0.007 -0.905 0.009 -0.522 

BLR -0.083 0.050 -0.060 0.294 -0.133 1.439 0.005 -0.975 0.252 -0.013 -0.776 0.009 -0.703 

NBLR 0.000 0.047  0.000 2.602 -12.060 4.524 0.000 0.000 0.255 0.000 0.000 0.011 0.000 

 

Table 6. Comparison performance of RR, LR, BL, and NBL methods based on MMAD 

Methods          RMSE 

RR         24.8303 

LR         31.9082 

BLR         40.3455 

NBLR         15.1699 

 

7. Conclusions 

In this paper, new Bayesian lasso method for variable selection have proposed based on the Laplace prior 

distribution as scale mixture of normals mixing with Rayleigh distribution on their variances. New 

hierarchical model representation and new Gibbs sampler algorithm have developed. Two simulation 

examples conducted to explore the path solution of the proposed method, as well as we performed real data 

analysis. The results of simulation presented some evidence of Comparable of the proposed method to the 

others methods, but with outperform of the new Bayesian method in the real data in views of sparsity. 
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Appendix A 

1

2𝑎
exp [−

|𝑧|

𝑎
] = ∫

1

√2𝜋𝑠2

∞

0

 𝑒−𝑧2 2𝑠2  ⁄
𝑠

𝑎
 𝑒−𝑠2 2𝑎⁄    𝑑𝑠 

The RHS of above equation can be written as, 

1

𝑎
∫

𝑠

√2𝜋𝑠2

∞

0

exp [−
(𝑠2)2 + √𝑎2 𝑧2

2𝑎𝑠2
]  𝑑𝑠  

𝐿𝑒𝑡√𝑎 = 𝑏, 𝑡ℎ𝑒𝑛 

1

𝑏2
∫

𝑠

√2𝜋𝑠2

∞

0

exp [−
(𝑠2 − 𝑏|𝑧|)2

2𝑏2𝑠2
−

2𝑠2𝑏|𝑧|

2𝑏2𝑠2
]  𝑑𝑠  

1

𝑏2
exp [−

|𝑧|

𝑏
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𝑠

√2𝜋𝑠2
𝑒𝑥𝑝

∞

0

[−
(𝑠2 − 𝑏|𝑧|)2

2𝑏2𝑠2
]  𝑑𝑠 

𝐿𝑒𝑡 𝜇 = 𝑏, |𝑧|, 𝑎𝑛𝑑  𝜆 = |𝑧|2 

1

𝑏2
exp [−

|𝑧|

𝑏
] ∫

1

√2𝜋
𝑒𝑥𝑝

∞

0

[−
(𝑠2 − 𝜇)2

2𝑏2𝑠2
]  𝑑𝑠 

1

𝑏2
exp [−

|𝑧|

𝑏
] ∫

1

√2𝜋
𝑒𝑥𝑝

∞

0

[−
𝜆(𝑠2 − 𝜇)2

2𝜇2𝑠2
]  𝑑𝑠 

𝐿𝑒𝑡 𝑠2 = 𝑧, 𝑡ℎ𝑒𝑛 
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Hence the proof (5). 


