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ABSTRACT   

Since lasso method launched, a lot of applications and extensions were run on it which made it to become 

deeply widely used in various discipline. In this paper, we proposed the Scale Mixture of Normals mixing 

with Rayleigh (SMNR) distribution on their variances to represent the double exponential distribution. 

Hierarchical model formula have derived with Gibbs sampler for SMNR. The proposed models; Bayesian 

Tobit Adaptive Lasso (BTAL) and Bayesian Tobit Lasso (BTL) models are illustrated using simulation 

example and a real data example through the prediction accuracy using the estimated relative efficiency with 

different sample. This is the first work that discussed regularization regression models under SMNR. 
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1. Introduction 

Regression models with predictors (𝑘) exceeding the sample size (𝑘 > 𝑛) and/or when the matrix (𝑋́𝑋) be 

near singular produces less meaningful predicted model in the view of the interpretable and the prediction 

accuracy. Under this situation [17], introduced the Lasso penalized Residual Sum of Squares (RSS) as the 

following minimization problem, 

(ℓ2(𝑦 − 𝑋𝛽𝑎𝑟𝑔𝑚𝑖𝑛 
   ))2 + 𝜆 ∑|𝛽𝑗|

𝑘

𝑗=1

,                                            (1) 

Where  𝜆 > 0 , is the shrinkage parameter that controls the shrinkage amount in coefficients (𝛽) which is the 

vector of unknown parameters. The second term in (1) is the penalty constraint that placed to reduce the 

number of the parameters in the following linear regression, 

𝑦 = 𝑋𝛽 + 𝜖,                                                                                      (2)  

Where 𝑦 = (𝑦1, … … … . 𝑦𝑛)´   is vector of the centered response variable, 𝑋 𝑖𝑠 𝑛 × 𝑘 matrix of standardized 

predictors (if they have different units), and 𝜖 ~𝑁(0, 𝜎2).  
The second term in (1) letting the lasso estimate of the irrelevant predictors shrunk exactly to zero [17], this 

feature called sparsity (variable selection) and then the regression model be more interpretable model. Lasso 

shrinkage produced estimator with a little bit bias and in the same time reducing the variance which improve 

the prediction accuracy. Consequently, the minimization problem in (1) can be viewed as the shrinkage 

estimation and sparsity in the same time. [15] introduced the focused lasso to deal with predictors that have 

parameters which are similar and ordered in some significate way. [8] suggest that the solution path of (𝜆)  

following algorithm called Least Angle Regression (LAR) which obtaining the lasso estimates of (𝛽𝑗). [18] 

introduced the elastic net regularization method that combined the lasso and ridge penalty functions, as well 
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works with collinearity predictors. [17] produced the group lasso variable selection method as a generalization 

of the classical lasso to select known groups of variables that have combined effect on the dependent variable. 

[19] proposed the following minimization problem to address the amount of bias in lasso estimates,  

𝛽̂𝐴𝐿 = (ℓ2(𝑦 − 𝑋𝛽𝐵
 𝑎𝑟𝑔𝑚𝑖𝑛 

))2 + 𝜆 ∑ 𝑤𝑗|𝛽𝑗|

𝑘

𝑗=1

                         (3) 

 

The estimator 𝛽̂𝐴𝐿 in (3) is called Adaptive Lasso (𝐴𝐿) estimator ,where  𝜆 ≥ 0 , is the shrinkage parameter , 

and 𝑤𝑗 are the weights  𝑤𝑗 > 0, which defined as  𝑤̂
𝑗=1 |𝛼𝑗|

𝜂
⁄  ,

 where 𝛼𝑗 is an initial value of 𝛽̂𝑗 and  𝜂 > 0. 

 The adaptive lasso penalty function in Tobit quantile regression introduced by [3].  Newly,  Bayesian lasso 

became more popular when [14], stated that the lasso estimate can be obtained as Bayesian posterior mode 

conjugated with independent Laplace priors for (𝛽𝑗), 

𝑔(𝛽𝑗) =
1

2𝜈
𝑒− 

𝛽𝑗

𝜈                                                                                 (4) 

Here (𝜈 = 1
𝜆⁄ ) . The lasso estimate of (𝛽)  in (4) is the posterior mode estimate. 

Gibbs sampler algorithm easily employed to use to obtain the Bayesian lasso estimates. Park and Casella [13] 

provided Bayesian analysis of the linear regression when the parameter (𝛽)  is distributed as double exponential 

density with Scale Mixture of Normals (SMN), mixing with exponential density on their variances. [5] 

compared the classical lasso results with the Bayesian Lasso results using certain Full Bayesian condition with 

hierarchical representation model. [12] proposed the following new minimization problem of the Bayesian lasso 

by assuming that the regularization parameter (𝜆)  takes different (𝜆𝑗)  for each parameter (𝛽)  instead of the 

same (𝜆)  for every parameter as in lasso method. 

(ℓ2(𝑦 − 𝑋𝛽𝐵
 𝑎𝑟𝑔𝑚𝑖𝑛 

))2 + 𝜆 ∑ 𝜆𝑗|𝛽𝑗|

𝑘

𝑗=1

                                       (5) 

[9] introduced a Bayesian regularization method that analogue to the adaptive lasso method whereby allowing 

to the scale parameter (𝜆)  in the mixing density of the scale mixture of normals to vary from parameter to 

parameter. 

In many practical situations, researcher adopting certain statistical techniques to deal with censored samples. 

[16] introduced the Tobit regression to deal with the data that experiencing left censored response variable (𝑦)  

, which is defined as follows 

𝑦𝑖 = {   
𝑥́𝛽 + 𝜖𝑖        𝑖𝑓    𝑥́𝛽 + 𝜖𝑖  > 0                      
0                   𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

                 (6)  

Where 𝜖~𝑁(0, 𝜎2), 𝑦𝑖
∗ =  𝑥́𝛽 + 𝜖𝑖 is the latent variable ,and 𝑦𝑖 = max{0, 𝑦𝑖

∗}, 

In [4] studied the Bayesian Tobit quantile regression when the regression parameter (𝛽). have g-prioe density 

under ridge coefficient. Also, the Bayesian analysis of the Tobit quantile regression under elastic net penalty 

function was introduced in [5]. The Bayesian Tobit quantile regression with the new SMN was studied [6]. The 

Lasso and adaptive lasso Tobit regression models with new mixture of uniforms, mixing with standard 
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exponential density as prior representation of the regression parameter (𝛽), but the prior is not conditioning on 

(𝜎2) was studied in [1].  

In this paper, followed of [2], [13],[11], [1], we proposed a new hierarchical model formulation for Bayesian 

lasso Tobit and Bayesian adaptive lasso Tobit regressions considering that the prior distribution of the regression 

parameter (𝛽) follows the Laplace distribution as Scale Mixture of Normal mixing with Rayleigh density on 

their variances (SMNR). 

In section 2 we introduced the SMNR as the Laplace prior distribution. Also, in section 3 , we presented new 

hierarchical model formulation of the Laplace as SMNR, and Gibbs sampler algorithm presented in section 4. 

Two examples studied and real data analysis are presented in section 5 and section 6. In section conclusions 

have provided. Appendix A include the proof of the SMNR.  

[13] addressed the problem of multiple modes in the posterior distribution (𝜋(𝛽, 𝜎2)  with the prior in (4) through 

conditioning on (𝜎2)  to assure the unimodal of the (𝛽𝑗)  posterior distribution, i.e.,  

𝜋(𝛽 𝜎2⁄ ) = ∏
𝜆

2√𝜎2

𝑘

𝑗=1

𝑒𝑥𝑝 [−
𝜆|𝛽𝑗|

√𝜎2
]                                         (7) 

Following [13] our new full Bayesian analysis consider the conditional Laplace prior form as follows, 

𝜋(𝛽 𝜎2⁄ ) = ∏
𝜆

2𝜎2

𝑘

𝑗=1

𝑒𝑥𝑝 [−
𝜆|𝛽𝑗|

𝜎2
]                                            (8) 

2.   Scale mixture of normal mixing Rayleigh  

Following [10] and [7], the scale mixture of normal s mixing the parameter  σ  on their variances is, 

f(x) = ∫
1

σ

∞

0

∅ [
x

σ
] h(σ)dσ                                                             (9) 

Hence, f(x) is symmetric about zero and unimodal function. So, based on (9) and  

if z s~N(μ = 0, s2),    s~rayleigh (a)   , then z~Laplace (μ = 0, a),⁄  

1

2a
exp [−

|z|

a
] = ∫

1

√2πσ2
 

∞

0

e−z2 2s2⁄
s

a  
e−s2 2a⁄ ds                                 (10) 

Appendix A contain the proof of (10). 

Let a = σ2

λ⁄  , z = β , and  s = σ√τ, then (10) can be written as, 

λ

2σ2
exp [−

λ|β|

σ2
] = ∫

1

√2πσ2τ
 

∞

0

e−β2 2σ2τ⁄
λ

2  
e−λτ 2⁄ dτ               (11) 

The prior density (10) is conditioning on σ2 to assure a unimodal posterior distribution. 

3. Hierarchical Bayesian Lasso Tobit model 
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The new hierarchical full model formulation under the proposed scale mixture (10) defined as follows, 

 

  𝑦𝑖=𝑚𝑎𝑥{0,𝑦𝑖
∗} ,             𝑖=1,2,……..,𝑛   

 𝑦𝑖
∗|𝑋, 𝛽, 𝜎~𝑁𝑛(𝑋𝛽, 𝜎2𝐼𝑛), 

𝛽|𝜎2, 𝜏1, … … , 𝜏𝑘~𝑁𝐾(0, 𝜎2 𝐷𝜏), 
𝐷𝜏 = 𝑑𝑖𝑎𝑔(𝜏1, … … , 𝜏𝑘),                                                                             (12) 

𝜎2, 𝜏1, … … , 𝜏𝑘~𝜋(𝜎2)𝑑(𝜎2) ∏
𝜆

2

𝑘

𝑗=1

𝑒𝑥𝑝 {−
𝜆𝜏𝑗

2
} 𝑑𝜏𝑗 

𝜎2, 𝜏1, … … , 𝜏𝑘 > 0, 
 

The conditional prior 𝜋(𝛽 𝜎2⁄ ) in (8 ) can be obtained after integrating out 𝜏1, … … , 𝜏𝑘 in (12) Also, we can use 

prior density (1 𝜎2)⁄ , or any inverse gamma for 𝜋(𝜎2) to maintain the conjugacy in the SMNR. The Gibbs 

sampler algorithm can be implemented through the following full joint density: 

𝑓(𝑦 𝛽, 𝜎2), 𝜋(𝜎2)⁄ ∏(𝛽𝑗 𝜏𝑗 ,⁄ 𝜎2)𝜋(𝜏𝑗)

𝑘

𝑗=1

=
1

(2𝜋𝜎2)𝑛 2⁄
𝑒

1
2𝜎2(𝑦−𝑋𝛽)´(𝑦−𝑋𝛽)

 

 

𝜋(𝜎2)
𝛾𝑎

Γ𝑎

(𝜎2)−𝑎−1𝑒−𝛾 𝜎2⁄ ∏
1

√2𝜋𝜎2𝜏𝑗

𝑘

𝑗=1

 𝑒−𝛽𝑗
2 2𝜎2⁄  

𝜆

2
𝑒−𝜆𝜏𝑗 2                                      (13)⁄  

The full conditional for β can written as follows: 

 

−
1

2𝜎2
 (𝛽 − 𝐶−1𝑋´𝑦)

´
𝐶(𝛽 − 𝐶−1𝑋´𝑦), 

Recalling the multivariate normal distribution X~(μ, Σ) ,then we can say that β follows the multivariate normal 

density with mean C−1X´y  and variance  σ2C−1 . The full conditional distribution for   σ2 is the conditionally 

inverse gamma distribution, 

  σ2 . ~ Inverse Gamma(
n − 1

2
⁄ +

p

2
+ a, (y − Xβ)´(y − Xβ) 2 + β´Dr

−1β 2 + γ)⁄⁄  

The Gibbs sampler distribution for τ is the inverse Gaussian distribution, 

 

(τj)
−

3
2 exp (

−βj
2

2σ2τj
−

λτj

2
) ∝ (τj)

−
3
2 exp (−

βj
2(

1
τj

− √λσ2 β2)⁄
2

2σ2(1
τ⁄ )

   

Then, we can say that (1 τj⁄ )~IG (√
λσ2

βj
2  , λ), where λ is the shape parameter and √

λσ2

βj
2  is the mean (location)  

parameter. Choosing the regularization parameter λ, based on [13] the distribution of prior λ is the Gamma 

(γ, δ) , then the conditional posterior distribution of λ is 

 

(∏
λ

2

k

j=1

e−
λ
2

τj) (λ)γ−1e−δλ = λp+γ−1exp [−λ(
1

2
∑ τj + δ)

k

j=1

] 

 

This is again the gamma distribution, i.e., λ~Gamma(p + γ,
1

2
∑ τj + δ).k

j=1  
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4. Hierarchical Bayesian adaptive Lasso Tobit model 

 

Based on the adaptive lasso estimator of [12] in (5) the conditional Laplace prior which can be represented as 

the SMNR (11), the hierarchical formulation for the Bayesian adaptive lasso Tobit is defined as follows, 

 

  𝑦𝑖=𝑚𝑎𝑥{0,𝑦𝑖
∗} ,             𝑖=1,2,……..,𝑛   

 𝑦𝑖
∗|𝑋, 𝛽, 𝜎~𝑁𝑛(𝑋𝛽, 𝜎2𝐼𝑛), 

𝛽|𝜎2, 𝜏1, … … , 𝜏𝑘~𝑁𝐾(0, 𝜎2 𝐷𝜏), 
𝐷𝜏 = 𝑑𝑖𝑎𝑔(𝜏1, … … , 𝜏𝑘),                                                                               (14) 

𝜎2, 𝜏1, … … , 𝜏𝑘~𝜋(𝜎2)𝑑(𝜎2) ∏
𝜆𝑗

2

𝑘

𝑗=1

𝑒𝑥𝑝 {−
𝜆𝜏𝑗

2
} 𝑑𝜏𝑗 

𝜎2, 𝜏1, … … , 𝜏𝑘 > 0, 
 

The conditional prior π(β σ2⁄ ) in (8) can be obtained after integrating outτ1, … … , τk in (14). Also, we can use 

prior density 1 σ2⁄ ,or any inverse gamma for π(σ2) to maintain the conjugacy in the SMNR. The Gibbs sampler 

algorithm is implementing with the following hierarchical model, 

   

 y|X, β, σ2~Nn(Xβ, σ2In), 

β|τσ2~N((X´X + Dτ
−1)

−1
X´y, σ2 (X´X + Dτ

−1)
−1

),                                             (15) 

τj
−1 σ2~IG (

√λjσ

|βj|
⁄  , λj), 

σ2~Inverse − Gamma (
n − 1

2
+

p

2
+ a, (y − Xβ)´(y − Xβ) 2 +⁄ β´Dτ

−1β 2 +⁄  γ), 

Following [12] the full conditional posterior distribution of λj  is defines as 

 

λj~Gamma(1 + γ, τj + δ)                                                      (16) 

 

5. Simulation analysis 

In this section, we have generated the observation of (𝑥1, … . . , 𝑥𝑝)  predictors independently from 𝑁𝑛=8(0, Σ). 

The matrix Σ is defined as  Σ𝑖𝑗 = 0.5|𝑖−𝑗|. Also, we have generated 100 observations from the Tobit model  𝑦𝑖 =

max{0, 𝑦𝑖
∗}, here 𝑦𝑖

∗ = 𝑋𝛽 + 𝑒. We conducted the simulation analysis based on sparse condition: 

1- The true vector of parameter (𝛽 = 3,1.5 , 0,0 ,2,0,0,0)𝑇 with error term has followed deterrents 

scenarios; 𝑁(0,1), T-student distribution with 3 degrees of freedom, and Chi-squared distribution with 3 

degrees of freedom. . In this paper we focused on the prediction accuracy of the parameter estimates for 

different regression models; Bayesian Tobit Model(BTM), Bayesian Median Tobit Model (BMTM) with 

our proposed models , Bayesian Tobit Adaptive Lasso Model (BTALM), and Bayesian Tobit Lasso Model 

(BTLM). The estimated relative efficiency (reff) statistics are used for comparing between the different 

models, 
 

𝑟𝑒𝑓𝑓(𝛽̂𝑗) =
𝑆

𝑚𝑜𝑑𝑒𝑙(𝛽̂𝑗)
2

𝑆
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝑚𝑜𝑑𝑒𝑙(𝛽̂𝑗)
2  

 

𝐻𝑒𝑟𝑒, 𝑆
(𝛽̂𝑗)
2 and 𝛽̂𝑗 are defined as follows, 

 



 PEN Vol. 8, No. 2, June 2020, pp.1131- 1140 

1136 

𝑆
(𝛽̂𝑗)
2 = ∑

(𝛽̂𝑗
𝑘

− 𝛽̅𝑗)

400

400

𝑗=1

 

 

𝛽̅𝑗 = ∑
𝛽̂𝑗

𝑘

400

400

𝑗=1

 

Where, 𝛽̂𝑗
𝑘
 is the target model parameter estimate with rth replications, and 𝛽𝑗 is the true value of parameter. 

Table 1 and Table 2 show the values of the estimated relative efficiency of the proposed models relative to 

other models by using 100 and 200 sample sizes based on sparse conditions. 
Table 1. Relative efficiency under dense condition and sample size=100 

 

Table 2. Relative efficiency under dense condition and sample size=200 

Error Dist. Method 
𝐸𝑓𝑓(𝛽̂1) 𝐸𝑓𝑓(𝛽̂2) 𝐸𝑓𝑓(𝛽̂3) 𝐸𝑓𝑓(𝛽̂4) 𝐸𝑓𝑓(𝛽̂5) 𝐸𝑓𝑓(𝛽̂6) 𝐸𝑓𝑓(𝛽̂7) 𝐸𝑓𝑓(𝛽̂8) 

NORMAL BTM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BMTM 2.7695 1.9071 1.2953 3.1325 3.3123 2.6089 2.0824 1.5432 

BTALM 1.0798 0.7836 0.4083 1.1906 1.5063 1.1433 0.9543 1.1829 

BTLM 1.0995 0.7987 0.4200 1.1895 1.5411 1.1441 1.0046 1.1858 

T-STUDENT 

(3) 

BTM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BMTM 0.2207 0.3930 0.2967 0.4954 0.2677 0.3268 0.3457 0.3546 

BTALM 0.1323 0.2781 0.2316 0.2333 0.1641 0.2372 0.2560 0.1787  

BTLM 0.1314 0.2744 0.2363 0.2419 0.1646 0.2420 0.2623  0.1816 

CHI-SQUARE 

(3) 

BTM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BMTM 0.3879 0.6695 0.3177 0.4351 0.5069 0.6959 0.6095 0.5332 

BTALM 0.3428 0.6230 0.2379 0.3432 0.5109 0.6945 0.5152 0.6847 

BTLM 0.3395 0.6040 0.2593 0.3269 0.5076 0.6840 0.4917 0.6746 

 

In general, it can be seen that the relative efficiency (reff) values in  Table 1 and Table 2 obtained from the 

proposed models (BTALM), and (BTLM) are more efficiency than the other models (BTM, BMTM) as the 

sample size increasing from 100 to 200 especially when the error term followed the Normal distribution, which 

Error Dist. Method 
𝐸𝑓𝑓(𝛽̂1) 𝐸𝑓𝑓(𝛽̂2) 𝐸𝑓𝑓(𝛽̂3) 𝐸𝑓𝑓(𝛽̂4) 𝐸𝑓𝑓(𝛽̂5) 𝐸𝑓𝑓(𝛽̂6) 𝐸𝑓𝑓(𝛽̂7) 𝐸𝑓𝑓(𝛽̂8) 

NORMAL BTM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BMTM 0.5399 1.2762 1.0210 1.3080 0.9088 1.5207 1.1854 1.2299 

BTALM 0.4443 0.5942 0.4497 0.5427 0.3559 0.6244 0.6319 0.3770 

BTLM 0.4546 0.6018 0.4537 0.5250 0.3584 0.6212 0.6280 0.3706 

T-STUDENT (3) BTM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BMTM 0.1528 0.1695 0.1059 0.1089 0.1161 0.1697 0.1900 0.2053 

BTALM 0.0439 0.1017 0.1063 0.0595 0.0736 0.0834 0.0638 0.0777 

BTLM 0.0452 0.0997 0.1055 0.0572 0.0733 0.0846 0.0660 0.0775 

CHI-SQUARE (3) BTM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BMTM 0.2119 0.2463 0.3616 0.2842 0.2888 0.4633 0.3003 0.2662 

BTALM 0.2013 0.2083 0.3846 0.2840 0.2314 0.4060 0.3606 0.3558 

BTLM 0.1900 0.2178 0.3840 0.2644 0.2369 0.4078 0.3557 0.3506 
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means that the variances of the different parameters in the sparse model decreases compared with the other 

models.  Figures 1 and 2 show the distributions of the parameter estimates, we can see that the distribution of 

the parameter is following the normal distribution under BTAL and BTL models, respectively. 

 
Figure 1. Histograms of parameter estimates of the BTALM 

 

 
Figure 2. Histograms of parameter estimates of the BTLM 

 

The diagnostic convergence tool, trace plot show in the following Figures (3) and (4) explain that the MCMC 

samples of the posterior pdf of regression parameters convergence to target distribution. Also, the trace plots 

show that the MCMC does not suffer from slow mixing. 
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Figure 3. Trace Plots of 1 8 −  of parameter estimates of BTALM 

 

 
Figure 4. Trace Plots of 1 8 −  of parameter estimates of BTLM 
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6. Analysis of real data 

We have collected the data from AL-Shamiya General Hospital that located in the south of Iraq. The sample 

size is 250 observations. The response variable  represent the number of active sperm (censored about zero) , as 

well as  six  predictors variables ; (testosterone) the normal size of testosterone in blood 8.2-34  n.mol/l, 

(Prolactin) the normal size of  Prolactin it is 1.5-19  ng/ml  less than 19, ( pH  semen) the normal of PH semen 

7.1-8 , (Viscosity  semen) the normal od Viscosity  semen its 20-30 minutes, smoking (=1 if yes, 0 otherwise) 

and Sperm  antibodies (=1 if blood has sperm antibodies , 0 otherwise ). Since the predictor variables have 

different measure units, we standardized their values and then centered the response variable values. 

We followed [11] to estimate the penalty parameter   value which is the posterior mean when the prior 

distribution is gamma (16) while implement the MCMC/Gibbs sampler algorithm. 

We implement the proposed Bayesian conditional posterior distributions based on BTLAM and BTLM models 

in (2) and compared with (BTM, and BMTM) regressions. Table (3) contains the estimates of 6 parameters of 

the predictor variable of (BTM, BMTM, BTALM, and BTLM) regressions, clearly the BTAL and BTL models 

are outperform better than BTM and BMTM in terms of the sparsity. Table 4 contains the values of the Mean 

Squares Error (MSE) for regression models (BTM, BMTM, BTALM, and BTLM) and exhibits that BTALM 

and BTLM performs better than other regression models, followed by BTM and BMTM respectively. 

Table 4. The MSE values for BTM, BMTM, BTALM, and BTLM 

Methods 𝛽̂1 𝛽̂2 𝛽̂3 𝛽̂4 𝛽̂5 𝛽̂6 

BTM 
1.2405 -1.3445 -2.5405 1.3002 10.9993 -3.1399 

BMTM 
0.8806 -1.4892 -1.1832 1.1445 10.8787 -6.7115 

BTALM 
1.2793 0.0000 1.8417 1.4461 8.6933 -1.8745 

BTLM 
1.2812 0.0000 1.0081 1.4489 8.7936 -2.0152 

 

The boxplots in Figure 7 explains that the proposed models BTALM and BTLM does not suffer from the 

dispersion of the parameter estimates compared with the other models. 

 

 
Figure 5. Comparison of performance between different method along with 1 6 −    
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New regularization regressions; Bayesian Tobit Adaptive Lasso (BTAL) and Bayesian Tobit Lasso (BTL) 

models have proposed based on the Laplace prior distribution as scale mixture of normals mixing with Rayleigh 

distribution on their variances. New hierarchical model representation and new Gibbs sampler algorithm have 

developed. We have conducted simulation analysis to explore the path solution of the proposed regularization 

regressions, also we performed real data analysis. The results of simulation presented some evidence of 

competitable of the proposed regression models to the others exists models, but with outperform of the new 

Bayesian regression models in the real data in views of variable reduction. 
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