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ABSTRACT   

In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters 

using Bayes method with square error loss function, Jeffery’s formula and conditional probability random 

variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian  

estimator compared to the maximum likelihood of this function and moment method using simulation 

technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The 

consequences have shown that Bayes estimator has been more efficient than the maximum likelihood 

estimator and moment estimator in all sample sizes. 
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1. Introduction  

Laplace distribution stands for an important probability distribution as usable model for estimating the reliability 

of electronic systems, particularly, in the field of communication engineering. It was highly adopted design 

engineers for these systems to investigate the durability, quality and diversity of the performance as well as 

speed of completion of the tasks assigned to these    systems  [1].  Laplace distribution has two parameters (a, b). 

Accordingly, a is the  shift parameter and b  is  the scale parameter  in which a R and  b R
+

   for each of 

them respectively. Laplace distribution is a member of continuous probability distribution and considered as a 

model for failure time distribution. This distribution is one of the earliest in probability theory, and it was 

introduced by the French scientist Pierre Simon Laplace in 1774. 

In 2004, Nadarajah has presented several Laplace distribution and derived the corresponding forms for the 

reliability with R=pr(x2>x1), when .x1  and  x 2  are independent random variables belong to the univariate family 

of distributions. The calculation involved the use of special functions [2]. 

In [3], several Bayesian estimators of the scale parameter for Laplace distribution have derived under diverse 

loss function involving the squared log error loss function, quadratic loss function and entropy loss function. In 

view of that, several classical estimators have been acquired like maximum likelihood estimator, uniformly 

minimum variance unbiased estimator and minimum mean squared error estimator [4].  

A study about investigating properties and estimators for reliability of double exponential distribution has been 

presented in [5]. It was dealt with stress and strength with deriving the forms for the estimation methods 

(maximum likelihood, moment and shrinkage).  A comparison of them has been detailed using simulation and 

comparative statistical criterion based on mean square error (MSE) [5]. Li, in 2017, has derived Bayes estimator 

of the shape parameter of Laplace distribution using Bayesian technique under a new loss function. It has been 

a compound function of LINEX function. The Bayes estimator of the parameter has been derived under a prior 

distribution of the parameter based on Gamma prior distribution [6].  Onwukwe and Agu, in 2019, have applied 

the modified Laplace distribution based on two life datasets with simulated data. Parameters of the distributions 
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were estimated using method of maximum likelihood estimation. The study has given comparison about the 

modified Laplace distribution with Laplace distribution and generalized error distribution using Schwartz 

Criteria (SC) measure of fitness. The results obtained revealed that the modified Laplace distribution has a better 

fit than the Laplace and generalized error distributions [7].In our  study, we derived new estimator  based on 

reliability function of Laplace distribution with two parameters (a, b) using Bayes method, Jeffery’s formula 

and  conditional probability random variable of observation  ( )1 2, ...., / ,ntf t t a b . As a result, the posterior 

distribution for the parameters is: 

( )
( ) ( )

( ) ( )
1

1

1

,..., \ , ,
, \ ,.....,

,..., \ , ,

n

n

n

a b

f t t a b g a b
h a b t t

f t t a b g a b da db
 

=


 

We used  
2( , ) ( )L R R R R

 

= −  so that Bayes estimator ( )R t


 for Reliability ( )R t  is: 

 1( ) [ ( ) / ,...., ]nR t E R t x x


=

 1( ) ( ) ( , / ,...., )n

a b

dbR t R t h a b x x da


 

= 

 We used Monte Carlo simulation and compared it with the maximum likelihood reliability function and moment 

reliability of Laplace distribution based on several values for the parameters of Laplace distribution and sizes. 

Simulation results have shown that Bayes estimator is the best method. Section 2 contains the derived Bayes 

estimator for reliability of Laplace distribution. Section 3 presents the theoretical part which explains the 

probability density function, cumulative, moments of Laplace distribution with two parameters.  As well, some 

properties of this distribution are given with derived Bayes estimator, invariant maximum likelihood estimator 

and moment estimator for the reliability function R(t). Section 4 provides a simulation study using MATLAB 

simulator.  Section 5 presents the major conclusions of this study. 

2. Material and methods 

The probability density function for Laplace distribution (p.d.f) with two parameters ( , )a b is [2]: 

1
exp( ) ,

( ) 2 (1)

t a
t

f t b b




− − −   
= 




 

a and b are the shift and scale parameters respectively ( ), 0a b−   .  The cumulative 

distribution function of Laplace's distribution (c.d.f) is [3]: 
  

1
exp

( ) 2 (2)

a t

F t when t ab

 −  
−   =    


  

( )
1

1 exp
2

(3)
t a

F t when t a
b

 −  
= − −   

  
 

 Therefore, the reliability function is: 

( )
1

1 exp (4)
2

a t
R t when t a

b

 −  
= − −   

  
  

( )
1

exp (5)
2

t a
R t when t a

b

 −  
= −   

  
 

It is known that the cumulative distribution function is complementary to the reliability function based on: 

 ( ) 1 ( )R t F t= −
 

Since; 
lim ( ) lim ( )
t a t a

R t R t
+ −→ →

=  
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Then, R (t) is continuous function at   t=a 

The moment method is a commonly used method for estimating parameters. The random variable 1 2X X X= −  

is standard Laplace distribution with 1 2,X X
  that are   random variables. They are both based on   exponential 

distribution with scale parameter equal to one. It can be expressed as: 

( ) ( )tX

XM t E e=   

( ) ( )( )1 2t X X

XM t E e
−

=  

( ) ( ) ( )1 2.
tX tX

XM t E e E e−
=  

( )
1 1

. (6)
1 1

XM t
t t

=
− +

 

Based on linear transformation, we get: 

   z a bx= +   

( ) ( )
1

exp
2

f x x= −   

( ) .
z a

g z f J
b

− 
=  

   
1z a dx

x J
b dz b

−
=  = =  

This makes   z as a random variable with two parameters (a, b) as follows: 

( )
1 1

exp .
2

z a
g z

b b

 − 
=  

 
 

 

 

The moment generating is as following: 

( )
( )

z

t a bx
M t E e

+ 
=  

 
  

( ) ( ).z

at bt x
M t e E e=  

( ) 2 21
z

ate
M t

b t
=

−
 

The variance can be expressed by the following formulas: 

( ) ( ) ( )
22Va r z E z E z= −     

( ) 2 2 2 22 2Va r z a b a b= + − =  

( ) 22

2

Va r z s b

s
b

= =

=
 

Accordingly, the mean is unbiased estimator for shift parameter a: 

( ) ( )
1

1 n

i

i

E X E x
n =

=    

( )
1

.E X na a
n

= =   

a x=  

( )
1

exp
2

z a
g z

b b

 − 
=  

 
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Therefore, we can use the arithmetic mean to estimate the unknown parameter a, we usually use the  

median and both of them a measure of   central tendency. 

( )
1

1 exp , ...............(7)
2

a t
R t t a

b

 −  
= − −   

    

( )
1

exp , ............... (8)
2

t a
R t t a

b

 −  
= −   

     

The likelihood function for a sample of size n from (a, b) for reliability function for Laplace distribution is 

feasibly derived by [8]:  

 

( )

( )

1

1

1

1

1

1
,....., ; , exp( )

2

1
,....., ; , exp ....... (9)

2

n

n

i

n n

n i

i

t a
f t t a b

b b

f t t a b b t a
b

=

−

=

−
= −

  
= − −   
   





  

( )1ln ,....., ; ,
n

-1

n i

i=1

f t t a b = -nln2 - nlnb -b t - a   

( )1

2
1

ln ,....., ; , 1
ˆ 0

ˆ ˆ

n
n

i

i

f t t a b n
t a

b b b =


= − + − =


   

1

1ˆ ˆ ......... (10)
n

i

i

b t a
n =

= −  

And in the same way concerning a, we will get the following: 

( )1

1

ln ,....., ; , 1
ˆ 0

n
n

i

i

f t t a b
t a

a b =


= − =


  

ˆ (11)a t=   

Therefore, the property of invariant the maximum likelihood estimator for reliability function is given by: 

( )
ˆ1ˆ 1 exp , ...............(12)

ˆ2

a t
R t t a

b

 −  
= − −   

  
 

( )
ˆ1ˆ exp , ............... (13)

ˆ2

t a
R t t a

b

 −  
= −   

  
 

Our suggested Bayes estimator was derived as follows: 

Let ( )1,....., nt t be a random sample of size   an   independent observation from a Laplace distribution having 

p.d.f, we will get: 

( )
1

/ , exp .........
2

t a
f t a b x

b b

 −  
= − −     
     

The likelihood function is based on the following: 

( )1

1

,..., / , ( / , )
n

n i

i

f t t a b f t a b
=

=
 

( )1

1

1 1
,..., / , exp

2

n n

n i

i

f t t a b t a
b b =

  
= − −   
   


 

Using Jeffrey’s variant prior, we will have [3]: 

( )1

1
,

2
g a k a k where k R

k
 −      
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( )2

1
, 0g b b

b
   

( ) ( ) ( )1 2, .g a b g a g b  

( )
1

,
2

g a b
k b

  

The posterior probability density function can be expressed as: 

 ( )1 1
1

2 1
, \ ,..., exp

n n

n in
i

h a b t t t a
b b


−

+
=

 
− − 
 

   

( )1 1
1

2 1
, \ ,..., exp (14)

n n

n in
i

c
h a b t t t a

b b

−

+
=

 
= − − 

 
  

Where, 

1

1

0

1 1
2 exp

k

n

in

k

c t a db da
b b



− −

+

−

  
= − −  

  
 

 

Let

      1

1 n

i

i

w t a
b =

= −  

Then, ( ) 1

0

n wn w e dw



− − =         and         

2

1

n

i

i

b dw
db

x a
=

= −

−
            

1 1

0

1

2

k

n n w

n
n

k

i

i
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c w e dw

t a



− − − −

−

=

 
=  

  
− 

 

 


 

( )1

1

2

k

n

n
n

k

i

i

da
c n

t a

− −

−

=

= 
 

− 
 




  

Consequently, equation (14) becomes in the following form: 

( )
( )

1

1

1

1

1

1

, / ,..., ......... (15)

n

i

i

t a
b

n

n k

n
n

k

i

i

e
b

h a b t t
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n

x a

=

− −

+

−

=



=


 

− 
 




  

Marginally, we can get simplify equation (15) as follows:    

( ) ( )1 1 1

0

/ ,..., , / ,...,n nh a t t h a b t t db



= 
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1

1

1

1

1
n

i

i

t a
b

n
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n
n

k

i

i

e
b
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n

t a
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− −

+

−

=



=


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 



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( )
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i
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−
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
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( ) ( )2 1 1/ ,..., , / ,...,

k
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k
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−
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1
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/ ,..., (16)
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+

−
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
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 
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 




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The parameters   a and b are taken into consideration as follows: 

 1\ ,...., na E a x x=  

( )1 1\ ,....,

k

n

k

a a h a t t da
−

 =   

1

1

(17)

n
n
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i

k

k

n
n

k

i

i
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a a
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=

−

−

=

 
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  =

 
− 

 





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0
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
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1
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1

1
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i

i
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b
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k
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n
n
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=
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+
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−

−

=


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
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
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1
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n

k

i

i
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i
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−
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−

=

 
− 
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
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The Bayes estimator ( )*R t  for R (t) using squared error loss function stands for the Posterior mean [9] and 

given by: 

( ) ( )*

1\ ,...., nR t E R t t t=      

( ) ( ) ( )

( ) ( )

*

1

0

*

1

0

, \ ,...,

1
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2

k

n

k

k

n

k
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R t h a b t t db da

b



−



−

=

 −  
= −  

  

 

 
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1
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n

b
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 
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=


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 
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 
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 
 
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 

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Let v and db as follows: 

1

1 n

i

i

v a t t a
b =

 
= − + − 

 
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2

1

n

i

i

b dv
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a t t a
=

−
=

− + −
 

We get ( )*R t  as: 

 

( ) 1*

1

1
........... (19)

2

k

nk n

i

i

k

nk n

i

i

da

a t t a

R t t a
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−

=

−

=

 
− + − 
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 
− 

 







  

Similarly, when   t a , we can get more simplification as follows: 

( ) ( )

( ) ( )

*

1

0

*

1

0

1
1 exp , \ ,...,

2

1
1 exp , \ ,...,

2

k

n

k

k

n

k

a t
R t h a b t t db da

b

a t
R t h a b t t db da

b



−



−

 −  
= − −  

  

 −  
= − −  

  

 

 

 

    

( ) 1*

1

1
1 ............... ............... (20)

2

k

nk n

i

i

k

nk n

i

i

da

a t a t

R t t a
da

a t

−

=

−

=

 
− + − 

 = − 

 
− 

 







  

3. Simulation 

Monte Carlo simulation has been employed as recurrent sampling to get the statistical properties of several 

phenomenoa. A primary variant of the simulation can be seen in the Buffon's needle experiment. In the 1930s, 

Enrico Fermi firstly experimented the Monte Carlo technique while studying neutron diffusion, but he did not 

publish anything on it [10]. Recently, many researchers have used simulation for generating Laplace distribution 

[5, 11]. In simulation, we adopted r=1000 where r is the replications. Arbitrary values of parameters shift  (a =-

1, 0,1) and scale (b= 1, 2, 3)  parameters respectively. 

Arbitrary values of sample sizes as (n =110, 20, 50, 75, 100) from Laplace distribution were selected by using 

MATLAB simulator version 2017.  

Laplace distribution has generated based on: 

1
1 exp

2

t
u

b

  
= − −  

       

( ) ln 2 1 0t b u for t= − − 

 

( )ln 2 , 0t b U for t=   

Then, the values of reliability ( )R t  of the moment have computed according to equations (7) and (8). 

Maximum likelihood ( )R̂ t  has been according to equation (12) and (13), while the reliability of Bayes 

estimator ( )*R t has been according to the equations (19) and (20).
 
 

Finally, we computed the efficiency of the two estimators using Mean Square Error (MSE): 
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( ) ( )
2

1

1
....... (21)

r

i

i

MSE R R R
r =

= −
 

Where, 

 R is the real value of reliability. 

R  is the estimator of ( )R t according to the method. 

 

4. The results and discussions 

The results of the estimator under different samples sizes are depicted in details in Tables 1-9 as follows: 

Table 1. The values of MSE for estimators when (a = 0, b = 1) with different sample sizes 

               Methods 

 n          

Moment 

method 

M.L.E method Bayes method Best method 

10 0.33111 0.423289 0.004232 Bayes method 

20 0.29222 0.350076 0.002178 Bayes method 

50 0.28116 0.214541 0.001089 Bayes method 

75 0.19967 0.188881 0.000851 Bayes method 

100 0.01496 0.101254 0.000659 Bayes method 

From Table 1 when (a =0, b = 1) with different samples sizes (n = 10, 20, 50, 75 and 100), the best method is 

Bayes method because of the smallest value of MSE. 

Table 2. The values of the MSE for estimators when (a = 0, b = 2) with different samples sizes  

           Method 

n 

Moment 

method 

M.L.E method Bayes method Best method 

10 0.520113 0.551416 0.005736 Bayes method 

20 0.510569 0.528407 0.001354 Bayes method 

50 0.434581 0.160337 0.001128 Bayes method 

75 0.390127 0.125205 0.000840 Bayes method 

100 0.340123 0.118359 0.000716 Bayes method 

From Table 2 when (a = 0, b = 2) with different sample sizes (n = 10, 20, 50, 75 and 100), the best method is 

Bayes method due to its minimum value of MSE. 

Table 3. The values of the MSE for estimators when (a = 0, b = 3) with different samples sizes 

 n                  Method Moment 

method 

M.L.E method Bayes method Best method 

10 4.998450 5.852958 0.002495 Bayes method 

20 3.987643 3.021546 0.002060 Bayes method 

50 3.500789 2.901644 0.001175 Bayes method 

75 2.987643 2.092493 0.000929 Bayes method 

100 1.997863 0.249968 0.000643 Bayes method 

We notice from Table 3 when (a = -0, b = 3) with different sample sizes (n = 10, 20, 50, 75 and 100) that the 

best method is Bayes method because of the smallest value of MSE. 

Table 4. The values of the MSE for estimators when (a = 1 and b = 1) with different samples sizes 

  n                     Method Moment 

method 

M.L.E method Bayes method Best method 

10 2.997845 3.596532 0.007365 Bayes method 

20 2.456872 3.368286 0.005589 Bayes method 

50 1.998764 2.003696 0.002171 Bayes method 

75 0.998780 0.320198 0.000524 Bayes method 

100 0.898754 0.214941 0.000116 Bayes method 

We notice from Table 4 when (a = -1, b = 1) with different samples sizes (n = 10, 20, 50, 75 and 100) that the 

finest method is Bayes method because of smallest value of MSE. 
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Table 5. The values of the MSE for estimators when (a = 1, b = 2) with different sample sizes 

 n              Method            Moment 

method 

M.L.E method Bayes method Best method 

10 4.167892 4.796259 0.002367 Bayes method 

20 3.065543 3.625585 0.001743 Bayes method 

50 3.041905 3.447336 0.000965 Bayes method 

75 1.999876 1.458064 0.000547 Bayes method 

100 0.943289 0.772277 0.000165 Bayes method 

Based on Table 5 when (a = 1, b = 2) with different samples sizes (n = 10, 20, 50, 75 and 100), the best 

method is Bayes method because of smallest value of MSE. 

Table 6. The values of the MSE for estimators when (a = 1, b = 3) with different sample sizes 

                    method 

         n  

Moment 

method 

M.L.E method Bayes method Best method 

10 2.021345 2.390146 0.025873 Bayes method 

20 1.999456 2.012150 0.005742 Bayes method 

50 1.689324 1.119627 0.002219 Bayes method 

75 0.876526 0.524271 0.001115 Bayes method 

100 0.123459 0.394955 0.000236 Bayes method 

We perceive from Table 6 in the case of (a = 1, b = 3) with different sample sizes (n = 10, 20, 50, 75 and 100) 

that the best method is Bayes method because of smallest value of MSE. 

Table 7. The values of the MSE for estimators when (a = -1, b = 1) with different sample sizes 

 n                 Method                    

 

Moment 

method 

M.L.E method Bayes method Best method 

10 0.153452 0.194804 0.001977 Bayes method 

20 0.100834 0.115557 0.000117 Bayes method 

50 0.119659 0.112913 0.000113 Bayes method 

75 0.091932 0.071003 0.000071 Bayes method 

100 0.089652 0.064394 0.000064 Bayes method 

We notice from Table 7 when (a = -1, b = 1) with different sample sizes (n = 10, 20, 50, 75 and 100) the best 

method is Bayes method because of smallest value of MSE. 

Table 8. The values of the MSE for estimators when (a = -1, b = 2) with different samples sizes 

n         Method               Moment 

method 

M.L.E method Bayes method Best method 

10 0.193987 0.303912 0.000319 Bayes method 

20 0.189378 0.270925 0.000103 Bayes method 

50 0.103481 0.085614 0.000085 Bayes method 

75 0.097652 0.078553 0.000083 Bayes method 

100 0.083219 0.060191 0.000060 Bayes method 

We notice from Table 8 when (a = -1, b = 2) with different sample sizes(n=10,20,50,75,100) that the finest 

method is Bayes method because of the lowest value of MSE. 

Table 9.  The values of the MSE for estimators when (a = -1, b = 3) with different samples sizes 

                 Method 

n 

Moment 

method 

M.L.E method Bayes method Best method 

10 0.239765 0.335462 0.000392 Bayes method 

20 0.207652 0.223917 0.000231 Bayes method 

50 0.119321 0.117482 0.000117 Bayes method 

75 0.108432 0.093257 0.000065 Bayes method 

100 0.087651 0.061206 0.000061 Bayes method 

We observe from Table 9 when (a = -1, b = 3) with different samples sizes (n=10,20,50,75, and 100) that the 

best method is Bayes method owing to the smallest value of MSE. 
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5. Conclusions  

• The Bayes estimators of reliability function of the Laplace distribution ( )*R t  is more efficient than the 

maximum likelihood estimator of the reliability ( )R̂ t  in all samples size because of smallest value of the 

MSE. 

• The moment estimator of reliability function for Laplace distribution ( )R t  is more effectual than the 

maximum likelihood estimator of the reliability ( )R̂ t  in sample sizes (10 and 20) because of the smallest 

value of the MSE. 

• The maximum likelihood estimator of the Reliability ( )R̂ t  is more effectual than the moment estimator of 

reliability function for Laplace distribution ( )R t  in   sample sizes (50, 75, and 100) because of smallest 

value of the MSE. 

• We can use Bayesian estimator for reliability function of Laplace distribution with two parameters via 

Jeffery model with applications in speech recognition to model priors on DFT coefficients and in JPEG 

image compression to model AC coefficients, generated by the DCT. 
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