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ABSTRACT   

The advancement of machine learning (ML) models has received remarkable attention by several science and 

engineering applications. Within the material engineering, ML models are usually utilized for building an expert system 

for supporting material design and attaining an optimal formulation material sustainability and maintenance. The current 

study is conducted on the base of the utilization of ML models for modeling compressive strength (Cs) of ground 

granulated blast furnace slag concrete (GGBFSC). Random Forest (RF) model is developed for this purpose. The 

predictive model is constructed based on multiple correlated properties for the concrete material including coarse 

aggregate (CA), curing temperature (T), GGBFSC to total binder ratio (GGBFSC/B), water to binder ratio (w/b), water 

content (W), fine aggregate (FA), superplasticizer (SP). A total of 268 experimental dataset are gather form the open-

source previous published researches, are used to build the predictive model. For the verification purpose, a predominant 

ML model called support vector machine (SVM) is developed. The efficiency of the proposed predictive and the 

benchmark models is evaluated using statistical formulations and graphical presentation. Based on the attained 

prediction accuracy, RF model demonstrated an excellent performance for predicting the Cs using limited input 

parameters. Overall, the proposed methodology showed an exceptional predictive model that can be utilized for 

modeling compressive strength of GGBFSC. 
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1. Introduction 

The enhancement of the sustainability of concrete has been the focus of several studies with the aim of reducing 

the level of CO2 generation from cement production, as well as increasing the durability of concrete; the 

researchers believe that these measures can be beneficial to the environment through the reduction of waste and 

conservation of resources [1]–[3]. The commonest approach towards achieving these aims is the utilization of 

recycled aggregates & mineral additives such as ground granulated blast furnace slag, fly ash, and silica fume 

[4]. These materials are used as partial replacement for either aggregates or cement during cement production 

[1], [5], [6]. Studies have shown that the incorporation of these materials into concretes improves the durability 

and mechanical properties of the resulting concrete, reduces the emission of CO2, conserves energy, and reduces 

the harsh impact of concrete on the environment [7], [8]. During the production of iron in a furnace, blast furnace 

slag (BFS) is generated as the waste product. The molten BFS is cooled with water and pulverized to form 

GGBFS which, in the presence of water, can react with (Ca(OH)2) to form calcium silicate hydrate. This product 

is mainly responsible for the strength of most cement-based compounds [9], [10]. This pozzolanic reaction of 

GGBFS makes its use as a cement replacement material capable of reducing the early strength; however, it 

improves the ultimate strength, durability, and microstructure of hardened concrete [11]–[13]. 

There are several available mathematical models and empirical equations for the estimation of the compressive 

strength (CS) and other properties of concrete; these models were developed to reduce the experimental task 

involved in designing concrete mixtures [14]–[17]. Generally, these equations are regression equations that are 

reliant on the outcome of several experiments. Meanwhile, the selection of a suitable regression equation for 

any analysis demands experience and numerous techniques since accuracy is inversely related to the number of 

explanatory variables in such experiments. The recent times have seen the numerical modeling of such 
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relationships achieved by building an intelligent models which can learn and generalize from instances via trial-

and-error without requiring any assumptions [18]–[22]. Among several ML models, artificial neural network 

(ANN) which is characterized by the ability to generate accurate solutions and evidential results even when 

there is insufficient data [23]–[25]. Several other ML models have been implemented for concrete compressive 

strength modeling with an optimistic manner [26]–[30]. Other literature review studies, for instance, the study 

by Bilim et al (2009) reported the use of ANN model trained with numerous learning algorithms for the 

prediction of the CS of GGBFSC based on the components of the concrete and the age [31]. Another study by 

Boukhatem et al (2011) focused on the use of ANN for the estimation of the efficiency factor of GGBFS related 

with concrete strength [32]. Numerous other ML have been applied in various studies for the prediction of the 

CS and other concrete properties [7], [31], [33], [34].  

Although, there have a massive researches on the application of ANN or even SVM models, those models are 

associated with certain disadvantages, such as easily entrapment in local minima based on the initial parameters’ 

selection; it may also be unreliable as its prediction accuracy is normally low [35], [36]. Scholars devoted several 

attempts to overcome these problems by exploring new models that are more reliably applicable to solve this 

complex problem of prediction. For example, the hybridization of ANN model with other metaheuristics have 

been suggested and among such metaheuristics, particle swarm optimization algorithms has been the commonly 

considered algorithm for combination with ANN due to its wide applicability and simplicity [37]. The 

hybridized ML models are relied on the global search capability of metaheuristics algorithms and to ensure the 

convergence to the global optima in a faster manner compared to the standalone ML models. The research scope 

of this area is still the stage of the exploration of more robust and simple ML models. Hence, the current study 

is explored the capacity of the RF model for modeling the CS of ground granulated blast furnace slag concrete. 

The performance of the RF model is validated against SVM model. Different input combination based on the 

related parameters are constructed in accordance to the degree of correlation. 

2. Data description 

The development of the proposed RF and the SVM models for the prediction of the CS of GCBFSC, it is 

important to ensure the data is prepared and that the database for the training and testing of the prediction model 

is constructed. In this study, the 268 experimental dataset were used, in which were collected from several 

published studies [15], [38]–[42]. All these data contained all the related information to the main characteristics 

of concrete and experimental CS of GGBFSC. The selection of the variables was based on correlation statics 

that generated seven input combinations. The considered input parameters were the curing temperature (T), 

GGBFS-to-total-binder ratio (GGBFSC/B), water-to-binder ratio (w/b), water (W), coarse aggregate (CA), fine 

aggregate (FA), and superplasticizer (SP), while the output variable was the compressive strength at 28 days of 

age that is in the range of 17 - 80 MPa. 

3. Methodological overview 

3.1. Random forest model 

Random forest model (RF) is commonly used in classification and regression problems; it works by constructing 

several random trees and relies on the bootstrapping method [43], [44]. The role of the RF in regression tasks 

involves the division of the input variables into several parts and computing the error between the actual and 

the predicted values. The sum of squared errors (SSE) for each part is computed and the best part is selected 

based on the minimum SSE. The samples are chosen randomly during the training process and the ones that 

were not selected are called out-of-bag samples which are used for the selection of the most significant variable 

based on the accuracy of the predicted output [45]. 

In the RF, the hyper-parameters consists of the number of trees in the forest, as well as the minimum required 

samples at a leaf node [46]. These hyper-parameters are tuned on the 75% dataset using 10-fold cross validation; 

this involves random splitting of the 75% dataset in each fold into 10 subsets. Out of these 10 subsets, 9 subsets 

are used to search for the optimum RF hyper-parameters for 40 times; the root mean square error (RMSE) value 

is computed each time on the other subset. The RF model with the least RMSE is selected at the end of 40 

iterations based on the validation set. However, the best RF model with the optimum hyper-parameters is 
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selected after 10 folds. Being that the procedure itself can cause the validation set to overfit, it is necessary to 

confirm the performance of the selected RF model in terms of its performance on the 25% dataset. 

3.2. Support vector machine (SVM) 

Support vector machine (SVM) is a supervised method for establishing the input-output relationship when 

building predictive models. The SVM is mainly peculiar in its kernel function, absence of local minima through 

learning process, and control system via organized support vectors and margin value [47]. The input variables 

in SVM are transformed into high dimensional space using nonlinear kernel function as depicted in Figure 1 

[48]. 

 

With this transformation, the algorithm can select the best hyperplane ((𝑌𝑖 =  𝜔0 + ∑ 𝜔𝑖
𝑚
𝑖=1 𝜙(𝑥))) that will 

separate the data set. This feature confers SVM with the capability to handle both linear and nonlinear functions. 

The SVM model has shown capability in achieving the optimal point in learning process when compared with 

another algorithm such as ANN. However, there are certain drawbacks of the SVM model when faced with 

large data set; such problems are related with the requirement of memory and kernel function selection. Initially, 

SVM was proposed by [49] for handling classification tasks. However, the introduction of ε – insensitive loss 

function by [50] expanded the application of the SVM to regression tasks as shown in Figure 2 [51]. 

 
Figure 1: The transformation of the SVM model. 

 
Figure 2. The example of the linear SVM regression model and the ε – insensitive zone 

 

The performance of SVM model is a function of the control parameters (kernel function, C- parameter, and ε – 

insensitive zone). C-parameter sets the balance between the model complexity and the level of deviation that is 

larger than ε [52]. The selection of this parameter is by trial and error through the training and testing phases. 
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Parameter ε is important in fitting the data set during the training phase by setting the width of ε – insensitive. 

The value of this parameter greatly impacts the support vector regression in SVM model. Kernel function 

selection is based on the intended application of the model and this can affect the variables during the training 

phase. The commonly used kernel functions are the Polynomial and Gaussian kernel [53]. In this study, 

Gaussian kernel is adopted owing to its few parameters compared to polynomial kernel. 

 𝑘(𝑋, 𝑋′) = exp(−𝑦. ‖𝑋 − 𝑋′ ‖2) , 𝑦 > 0  (1) 

Different methods was used to select the parameters of SVM model [54]. In this study paper. Parameters C and 

ε are selected by using the grid search algorithm [55]. 

3.3. Accuracy skills metrics 

Machine learning models usually is evaluated using statistical metrics that give an insightful meaning for the 

predictability potential. Hence, the developed models examined using several statistical metrics including mean 

absolute percentage error (MAPE), root mean square error (RMSE), mean absolute error (MAE) and Nash-

Sutcliffe coefficient. The mathematical explanation can be expressed as follows [56]–[58]:  

 

 
𝑀𝐴𝑃𝐸 =

100

𝑛
∑ |

𝐶𝑠(𝑜) − 𝐶𝑠(𝑝)

𝐶𝑠(𝑜)
|

𝑛

𝑖=1

 
(2) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝐶𝑠(𝑜) − 𝐶𝑠(𝑝))2𝑛

𝑖=1

𝑛
 

(3) 

 
𝑀𝐴𝐸 =

∑ |𝐶𝑠(𝑜) − 𝐶𝑠(𝑝)|𝑛
𝑖=1

𝑛
 

(4) 

 
𝑁𝑆𝐸 = 1 − [

∑ (𝐶𝑠(𝑜) − 𝐶𝑠(𝑝))2𝑛
𝑖=1

∑ ((𝐶𝑠(𝑜) − (𝐶𝑠(𝑜)
̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

] 
(5) 

 

 

where n represents the number of data sets, 𝐶𝑠(𝑜) and 𝐶𝑠(𝑝) refer to the actual observations and predicted 

concrete compressive strength over the training and testing modeling phases. 

4. Results and discussion 

This section deals with the potential predictability examination of the applied ML models including random 

forest and support vector machine for predicting concrete compressive strength. Artificial intelligence models 

were applied in this research to provide an intelligence model that is able to comprehend the actual mechanism 

of the Cs and the related parameters. ML models were utilized to calculate the mathematical relationship between 

seven attributes (i.e., T, w/b, GGBFS/B, W, FA, CA, SP) and the predicted variable compressive strength (𝐶𝑠). 

Based on several statistical metrics of measurement, the performance of examined ML models were evaluated. 

The selection of input variables was utilized in this study to investigate the combination of input variables which 

control the prediction process. This approach is useful in determination of the variables which have a great 

impact on the concrete compressive strength, these combinations are shown in Table 1. Seven input 

combinations were constructed based on the statistical correlation between the input parameters and the target 

Cs. The input combinations are constructed magnitudes of the correlation toward the value of the Cswhich are 

T =  0.23,
w

b
=  −0.65,

GGBFS

B
= 0.05, W =  −0.38, FA = 0.04, CA =  −0.1, SP = 0.3) (Table 1). 
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Table 1. The input combinations constructed to build the predictive ML models for the computation of the 

compressive strength 

Number of inputs Input combinations 

7 inputs 𝑀1: 𝐶𝑠 = 𝑓(𝑇, 𝑤/𝑏, 𝐺𝐺𝐵𝐹𝑆/𝐵, 𝑊, 𝐹𝐴, 𝐶𝐴, 𝑆𝑃)  

6 inputs 𝑀2: 𝐶𝑠 = 𝑓(𝑇, 𝐺𝐺𝐵𝐹𝑆/𝐵, 𝑊, 𝐹𝐴, 𝐶𝐴, 𝑆𝑃)  

5 inputs 𝑀3: 𝐶𝑠 = 𝑓(𝑇, 𝐺𝐺𝐵𝐹𝑆/𝐵, 𝐹𝐴, 𝐶𝐴, 𝑆𝑃)  

4 inputs 𝑀4: 𝐶𝑠 = 𝑓(𝑇, 𝐺𝐺𝐵𝐹𝑆/𝐵, 𝐹𝐴, 𝐶𝐴)  

3 inputs 𝑀5: 𝐶𝑠 = 𝑓(𝐺𝐺𝐵𝐹𝑆/𝐵, 𝐹𝐴, 𝐶𝐴)  

2 inputs 𝑀6: 𝐶𝑠 = 𝑓(𝐺𝐺𝐵𝐹𝑆/𝐵, 𝐹𝐴)  

1 input 𝑀7: 𝐶𝑠 = 𝑓(𝐹𝐴)  

 

The performance of the RF and SVM models and the attributes combinations are tableted in Table 2-5, 

respectively. The outcomes were reported based on performance metrics which evaluated for training and testing 

phase. Table 2 showed the performance indicators of the RF model over training phase. The results indicated 

that M1 gained an excellent result using the combination of all input variables. The model achieved minimum 

MAPE ≈ 0.01 MPa, RMSE ≈ 0.023 MPa, MAE ≈ 0.017 MPa and NSE ≈ 0.96. The outputs of RF model over 

testing phase are reported in Table 3. The results showed that M4 gave a good performance in the prediction 

process using the combination of T, GGBFS/B, FA and CA as input variable. The model achieved MAPE ≈ 

0.02 MPa, RMSE ≈ 0.05 MPa, MAE ≈ 0.03 MPa and NSE ≈ 0.86. 

Table 2. The statistical performance measures for the RF model over the training phase. 

  MAPE RMSE MAE NSE 

RF-M1 0.01118 0.02361 0.01763 0.96795 

RF-M2 0.01206 0.02543 0.0191 0.96281 

RF-M3 0.01338 0.0292 0.02116 0.951 

RF-M4 0.01345 0.03131 0.02141 0.94365 

RF-M5 0.01357 0.03166 0.02151 0.94237 

RF-M6 0.02272 0.05307 0.03624 0.83813 

RF-M7 0.02653 0.06201 0.04245 0.77895 

 

Table 3. The statistical performance measures for the RF model over the testing phase. 

  MAPE RMSE MAE NSE 

RF-M1 0.0253 0.05869 0.03903 0.82987 

RF-M2 0.0275 0.06196 0.04247 0.81043 

RF-M3 0.02525 0.05664 0.03886 0.84157 

RF-M4 0.02373 0.05256 0.03664 0.86358 

RF-M5 0.02914 0.06708 0.04482 0.77776 

RF-M6 0.041648 0.101586 0.064102 0.490332 

RF-M7 0.04344 0.10767 0.06746 0.42747 

 

The application of the SVM model showed a different predictability performance for the learning process in 

terms of the investigated combinations of the input parameters. Table 4 and 5 showed the performance measures 

of SVM model over training and testing phase, respectively. Again, the results reported that M1 achieved the 

best prediction results of all input variables over the other models. Statistically, the model accomplished MAPE 

≈ 0.02 MPa, RMSE ≈ 0.05 MPa, MAE ≈ 0.03 MPa and NSE ≈ 0.83 for training phase. For testing phase, the 

best model gave MAPE ≈ 0.03 MPa, RMSE ≈ 0.06 MPa, MAE ≈ 0.04 MPa and NSE ≈ 0.82. The best 

performance is acquired using all inputs variables while RF model achieved a better performance with 4 inputs 

combination. It can be noticed that RF model has a better performance than SVM model and this is returned to 

its capability in handling complex system [59]. The comparison of two models showed that RF model showed 

the superiority of RF model in terms of performance measures metrics. 



 PEN Vol. 8, No. 2, June 2020, pp.1011- 1023 

1016 

Table 4. The statistical performance measures for the SVM model over the training phase. 

  MAPE RMSE MAE NSE 

SVM-M1 0.02402 0.05419 0.03754 0.83118 

SVM-M2 0.02593 0.05828 0.0404 0.80472 

SVM-M3 0.02911 0.06963 0.04539 0.72132 

SVM-M4 0.03365 0.08155 0.05268 0.61769 

SVM-M5 0.036094 0.081941 0.056909 0.61403 

SVM-M6 0.0535 0.11368 0.08446 0.25707 

SVM-M7 0.05499 0.11744 0.08651 0.20715 

 

Table 5. The statistical performance measures for the SVM model over the testing phase. 

  MAPE RMSE MAE NSE 

SVM-M1 0.03001 0.06008 0.04662 0.82172 

SVM-M2 0.03606 0.07143 0.05577 0.74801 

SVM-M3 0.03739 0.0768 0.05793 0.7087 

SVM-M4 0.04266 0.08666 0.06673 0.62914 

SVM-M5 0.049826 0.097632 0.078341 0.529238 

SVM-M6 0.06125 0.12305 0.09536 0.25223 

SVM-M7 0.06202 0.12755 0.09602 0.19657 

 

Figures 3 and 4 displayed the scatter plot and the coefficient of determination for the testing phase for the RF 

and SVM models. Scatter plot used to give a better visualization of the prediction models. The graph describes 

the relationship between the observed and the predicted variables. Figure 3 indicated that RF M1 gave a superior 

correlation value with R2 of 0.94 in comparison with the other models. Whereas, the outcome of the SVM is 

presented in Figure 4. The outputs showed that best model is M1 with R2 value equal to 0.93. These results 

demonstrated an improvement in prediction result with 1% of R2 which achieved by RF model. 

 
Figure 3. The magnitudes of the correlation of the determination and the scatter plot variation between the 

actual and predicted 𝐶𝑠 over the test modeling phase for RF model and for all investigated input combinations 
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Figure 4. The magnitudes of the correlation of the determination and the scatter plot variation between the 

actual and predicted 𝐶𝑠 over the test modeling phase for SVM model and for all investigated input 

combinations 

 

 

Figures 5 and 6 depicted the graphical representation of the three performance indices include root mean square 

error, correlation and standard deviation in the Taylar diagram. Taylor diagram shows a better presentation of 

the optimal model combinations that have a nearest distance to the observed compressive strength. Figure 5 was 

displayed that RF model with M4 variables combination revealed the closest distance to the observed 

compressive strength. While Figure 6 showed the best variable - combination of SVM model. It could be noticed 

that SVM model with M1 combination achieved the nearest distance to the observed value. The results indicated 

that RF model gave a better performance with four input variables than SVM model which gained a good 

performance with all input variables. 
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Figure 5. Visualization of the Taylor diagram mapping between the actual and the predicted 𝐶𝑠 over the test 

modeling phase for RF model and for all investigated input combinations. 

 

 
Figure 6: Visualization of the Taylor diagram mapping between the actual and the predicted 𝐶𝑠 over the test 

modeling phase for SVM model and for all investigated input combinations. 
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Figures 7 and 8 were described the residual error of the ML models and their combination. Figure 7 

showed a better visualization of the input combinations performance on testing phase. From this figure, 

IT can be noticed that RF M4 gave the minimum error for compressive strength prediction with limited 

error ∓ 3% and less outliers. On the other hand, Figure 8 presented that minimum error gave by SVM 

M1 with error limited to ∓ 4%. 
 

 

 
Figure 7. The residual error box plots for the RF predictive model over the testing phase 

 

 
Figure 8. The residual error box plots for the SVM predictive model over the testing phase 

 

The attained predictability performance of the developed ML models (RF and SVM) could be enhanced through 

the integration of the feature selection for the highly essential input parameters. Among several input selection 

approaches, the nature inspired optimization algorithms [60]–[62]. Another possibility of prediction 

augmentation is the proposition of hybrid models where optimization algorithms are coupled for internal 

parameters tuning [63], [64]. 
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5. Conclusion 

The study is conducted on the utilization of recently explored ML model called random forest for modeling 

compressive strength (Cs) of GGBFSC. The performance of the proposed RF model was validated against 

support vector machine model. The models were constructed based on collected experimental observations from 

open source published related researches. The related parameters were T, w/b, GGBFS/B, W, FA, CA and SP. 

Seven input combination of modeling scenarios were established to build the predictive models. Based on the 

achieved prediction results, the proposed RF model displayed an excellent performance for predicting the Cs 

using T, GGBFS/B, FA and CA. Overall, the proposed methodology showed an excellent predictive model that 

can be utilized for modeling compressive strength of GGBFSC. 
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