Adapting some statistical methods to analyze TDS in drinking water

Saif Adnan Salman ${ }^{1}$, Ahlam Ahmed Juma ${ }^{2}$
${ }^{1}$ Ministry of Education
${ }^{2}$ College of Arts, University of Baghdad

Abstract

In this study, numerous statistical models were used including the Box-Jenkins models with several stages to build and forecasting the best model in the analysis of time series. Modern methods in time series analysis including fuzzy logic and fuzzy sets, have appeared as the most important alternatives to classical statistical methods. They have a mechanical ability to find solutions because they do not require the availability of classical model conditions, which are difficult to achieve in most cases. This paper aims to find the best method to analyze the behavior of pollution rates by studying Box-Jenkins and high order fuzzy time series methods. Then, an adaptation has conducted between the two methods as a proposed procedure on chemical examined data for total dissolved solids in drinking water for Baghdad city. The data are recorded from January 2004 to December 2018. These methods are compared in details through statistical criteria RMSE, MAE, MAPE.

Keywords: ARIMA, high order fuzzy, TMF, PSO, prediction, criterion.

Corresponding Author:

Ahlam Ahmed Juma
College of Arts, University of Baghdad, Iraq
E-mail: ahlamjuma@coart.uobaghdad.edu.iq

1. Introduction

Statistics science has prioritized the forecasting of time series for foreseeing the future through prediction theory and methods of forecasting techniques. The idea of documenting the historical data for phenomena in all fields using these data in forecasting is one of the most important statistical bases. A lot of statistical techniques have been used in this field, such as regression analysis, Box-Jenkins models etc., which were prevalent. Due to the great interest in the field of inaccuracies existing in various fields, the fuzzy has emerged to mimic human thinking, which depends on contrastive degrees. Fuzzy groups have found successful applications in many fields.
Fuzzy logic is a technique with the ability to find solutions for various scientific and human problems. The most important modern techniques for the application of this logic is the idea of fuzzy time series. It was proposed by the researchers' Song and Chissom in 1993 as an alternative to classical methods, which gives effective results as compared with classical statistical techniques [1].
The goal of the paper is to analyze the behavior of pollution rates in drinking water for Baghdad city by using the Box-Jenkins and high order fuzzy time series methods. An adaptation the two methods as a modified technique was employed to improve the adequacy of the model. It has taken a series of monthly chemical examinations for the total dissolved solids (TDS) from January 2004 to December 2018 for drinking water in Baghdad city. The best method is found in several comparative criteria based on RMSE, MAE, and MAPE.

2. Methodology

2.1. Box-Jenkins method

The autoregressive model (AR) represents the correlation of the current observations of the time series with previous observations of the same series and can be written as follows:

$$
\begin{equation*}
Z_{t}=\phi_{1} Z_{t-1}+\phi_{2} Z_{t-2}+\ldots+\phi_{p} Z_{t-p}+a_{t} \tag{1}
\end{equation*}
$$

It can be denoted as $\operatorname{AR}(\mathrm{p})$ and p represents the model's order. Accordingly, Z represents the series observations and ϕ represents the parameters of the model.
The moving average model (MA) is a correlation of the current observations of the time series with the same series error as previous observations and the general equation:
$Z_{t}=a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q}$
It is denoted as MA(q) and q represents the model's order. Accordingly, θ represents the parameters of the model.
The mixed model autoregressive-moving average denoted as $\operatorname{ARMA}(p, q)$ is the correlation of the current time series values with previous values of the same series. Also, it includes the correlation of the series values with the same series error of previous observations as follows:

$$
\begin{equation*}
Z_{t}-\phi_{1} Z_{t-1}-\phi_{2} Z_{t-2}-\ldots-\phi_{p} Z_{t-p}=a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q} \tag{3}
\end{equation*}
$$

Where (p, q) stands for the model order, and the model above represents the non-seasonal part or the so-called regular part for the time series.
Most studies have proven that autoregressive integrated moving average models (ARIMA) have superiority in all applied fields in model identification and time series prediction. For these models transformation, the time series has the stationarity feature. It is realized by taking a number of differences d for non-stationary time series where the degree of differences d is given, and $w_{t}=\nabla^{d} Z_{t}$ for transforming it into a stationary series. The ARIMA(p, d, q) model can be written as [2, 3]:

$$
\left.\begin{array}{cc}
\phi_{p}(B) w_{t}=\phi_{p}(B) \nabla^{d} Z_{t}=\theta_{q}(B) a_{t} & , a_{t} \sim W N\left(0, \sigma^{2}\right) \tag{4}\\
\text { OR } \quad \phi_{p}(B)(1-B)^{d} Z_{t}=\theta_{q}(B) a_{t} & , a_{t} \sim W N\left(0, \sigma^{2}\right)
\end{array}\right]
$$

2.2. Building the Box-Jenkins method

The Box-Jenkins (B-J) method is used to represent and analyse stationary or non-stationary time series, for seasonal and non-seasonal types. It can predict future values of the phenomenon by applying models of this method in the process of building the model of the time series. It includes identification the series and determines the appropriate model using some suitable criteria for this stage with estimation and prediction processes [2, 4].

Figure1. Box-Jenkins model building stages algorithm

The Box Jenkins methodology is one of the most important methods for predicting time series. It was presented by researchers Box \& Jenkins in 1970, as one of the most used methods in the analysis of the time series. This method is based on several stages:

- Stationary check stage of time series and application of transformation conversions needed to make them stationary.
- Determination of the appropriate model within the ARIMA models.
- Estimation of selected model parameters by one of the estimation methods.
- Diagnosis checking to investigate its feasibility for the time series.
- Forecasting using the selected model.

Figure 1 illustrates the model-building algorithm for B-J method [5].

2.3. Statistical criteria

A number of statistical criteria is used to differentiate between time series models. Then, it has selected the model order that corresponds to the lowest value for each criterion, including [4, 6]:

- Root square for mean square error

The mathematical equation of root square for mean square error denoted by RMSE is:

$$
\begin{equation*}
R M S E=\sqrt{\frac{\sum \hat{a}_{t}^{2}}{n}}=\sqrt{M S E} \quad, \hat{a}_{t}^{2}=\left(Z_{t}-\hat{Z}_{t}\right)^{2} \tag{5}
\end{equation*}
$$

Where,
MSE represent mean square error.

- The mean absolute error (MAE)

The mean absolute error can be written as:

$$
\begin{equation*}
M A E=\frac{\sum\left|\hat{a}_{t}\right|}{n} \quad, \hat{a}_{t}=Z_{t}-\hat{Z}_{t} \tag{6}
\end{equation*}
$$

- Mean absolute percentage error

The mathematical equation for mean absolute percentage error (MAPE) is determined by:
$M A P E=\frac{\sum\left(\left|\hat{a}_{t}\right| / Z_{t}\right)}{n} \times 100$

2.4. Fuzzy time series

Fuzzy time series are modern methods of prediction that were proposed by Song and Chissom in 1993 through their research reported [7]. They introduced the definition of fuzzy time series models and their most important features. Some definitions for fuzzy time series models are based on the following [8, 9]:

- Definition (1): Fuzzy time series

If we had $Z(t)$ and $t=(\ldots, 0,1,2,3, \ldots$.$) as sets of real number, a universe of discourse can be defined with$ the fuzzy sets $f_{i}(t), i=(1,2,3, \ldots)$. However, $F(t)$ is a time series defined within the specified period $f_{i}(t)$
.In this case, $F(t)$ is a fuzzy time series on $Z(t)$ and $f_{i}(t), i=(1,2,3, \ldots)$ which are linguistic values of the linguistic variable are $F(t)$.

- Definition (2): To establish fuzzy logic relationship (FLR), suppose that $F(t-1)=A i$. So, the relationship between the two consecutive observations $F(t)$ and $F(t-1)$ gives us a fuzzy logic relationship (FLR) $A_{i} \rightarrow A_{j}$.
The fuzzy logic relationships can be written in the form that each fuzzy relationship has the same fuzzy variables on the left $(A i)$. For example, if we have the two relationships:

$$
A_{i} \rightarrow A_{j 1}, A_{i} \rightarrow A_{j 2}
$$

So, it's written as:
$A_{i} \rightarrow A_{j 1}, A_{j 2}$

- Definition (3): If we suppose that $F(t)$ is a result of $F(t-1), F(t-2), \ldots, F(t-n)$

So, the fuzzy logic relationship can be written as follows:
$F(t-2), F(t-1), \ldots, \rightarrow F(t)$
This term is called the fuzzy time series prediction model of (n) degree so that $n \geq 2$. Several fuzzy time series models were projected in recent years that have manipulated many problems for different fields, including the high order fuzzy time series model.

2.5. High order fuzzy time series model

The high order fuzzy time series prediction model requires a number of steps to obtain predictive values. The process of predicting by using this model has mainly divided into dual parts of fuzzification and defuzzification [10].
The algorithm fuzzification depends on the generation of a time series of trapezoid fuzzy sets [11] for the original time series data and formation the relationships between the original data and the generated fuzzy aggregated. The fuzzification data process can be divided into six main steps [12,13,14]:
I. Arrangement of time series data in ascending order.
II. Calculating the average distance which denoted by (AD) between any two consecutive values $\left(x_{p}\right)$ in the resulting data from the previous step as follows:

$$
\begin{equation*}
A D\left(x_{i}, \ldots, x_{n}\right)=\frac{1}{n-1} \sum_{i=1}^{n-1}\left|x_{p(i)}-x_{p(i+1)}\right| \tag{8}
\end{equation*}
$$

and though $x_{p(i)} \leq x_{p(i+1)}$.
A standard deviation (SD) of the AD is calculated by:
$S D_{A D}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-A D\right)^{2}}$
III. Removing the AD values that lie outside the limits of the following defined period:
$A D-S D \leq m \leq A D+S D$
Here, (m) represents the set of values that lie within this period.
IV. Calculating the average distance rate $\left(A D_{R}\right)$ by taking the average for the values specified in the previous step (m).
V. Definition of the limits of the universe of discourse (U) as follows:

$$
\begin{equation*}
U=\left[D_{\min }-A D_{R} \quad, \quad D_{\max }+A D_{R}\right] \tag{11}
\end{equation*}
$$

Here, $\left(D_{\min }, D_{\max }\right)$ stand for lowest and the highest values in time series data respectively.
Fuzzification of time series data has been by using trapezoidal membership function (TMF). This process requires knowing the number of fuzzy sets (L) that must be based on (U). A number of these sets have calculated by:
$L=\frac{R-A D_{R}}{2 \times A D_{R}}$
Here, R is defined the domain of universe of discourse and calculated as a follows:
$R=U B-L B$
The $(U B, L B)$ are the upper and lower limit that were defined in equation (11).
The second section of this model is the process of defuzzification and the calculation of predictive values. To know how to calculate the output of the defuzzification process, use the defuzzification operator that defined with the following equation:
$X_{t}=\sum_{i=1}^{n} x_{t-i} \cdot w_{i}$
Namely, $w_{i} \in[0,1]$ and $\left(x_{t-i}\right)$ is the actual value for the time series in time $(t-i)$. Accordingly, L is depending on the range of time series. Assuming that $(\mathrm{L}=2)$, the defuzzification factor can be computed by:
$X_{t}=\left(x_{t-1} \cdot w_{1}\right)+\left(x_{t-2} \cdot w_{2}\right)$

The defuzzification factor $\left(X_{t}\right)$ can conclude a fuzzy logic view since weights (w_{i}) are fuzzy relationships between the previous and subsequent values in the time series. Each of these weights $\left(w_{i}\right)$ stands for the strong point of the causal association between the input values to the series and the resulting undefined values. The strongest causal relationship is being when the weight value $\left(w_{i}\right)$ is near to (1).
The process of defuzzification can be summarized as follows:

- Establishing fuzzy set groups

In classical fuzzy time series models [15, 16], fuzzy logic relationships can be defined after fuzzification of time series data. But, in this model, the right side of fuzzy logic relationships is undefined until weights $\left(w_{i}\right)$ are calculated. Therefore, we established the fuzzy set groups (FSGS) instead of fuzzy logic relationships by inserting fuzzy groups into arranged pairs. The aim of listing fuzzy sets in this shape is to find out if dual or more FSGS have the identical group components (fuzzy groups). Its aim is also to obtain a series of FSGS that do not contain a similar frequency for more than once in its values. FSGS items are taken from the third order to obtain a FSGS series that does not have frequencies groups.

- Transforming groups for fuzzy set into (If) rule

The rules (If) for fuzzy set groups FSGS can be evaluated using the following:

$$
\begin{equation*}
\operatorname{If}\left(F(t-1)=A_{i, t-1} \wedge F(t-2)=A_{i, t-2} \wedge \ldots \wedge F(t-n)=A_{i, t-n}\right) \tag{14}
\end{equation*}
$$

- Evaluating the rules of (If -then) by using particle swarm optimization

In this step we use particle swarm optimization which denoted (PSO) by using the following equation [17,18]:

$$
\begin{align*}
& v_{i+1}=w \cdot v_{1}+c_{1} r_{1}\left(\hat{x}_{i}-x_{j}\right)+c_{2} r_{2}\left(\hat{g}-x_{j}\right) \tag{15}\\
& x_{j+1}=x_{j}+v_{i+1}
\end{align*}
$$

To obtain the necessary weights $\left(w_{i}\right)$ to calculate the value of the coefficient of defuzzification $\left(X_{i}\right)$, the coefficients of the PSO function can be determined as follows:

- The value of the weight coefficient w is equal 1.4.
- The value of the velocity coefficients of elements c_{1}, c_{2} equal to 2 .
- The value of $\left[-v_{\max }, v_{\max }\right]$ are defined within the interval $[-0.01,0.01]$.
- The highest and the lowest values of the function elements are defined within the interval [0,1].
- The number of the elements of the PSO function is equal 5.

It is conventional to select the values of the function's coefficients of such form as they give the best results. The best global fitness value can be expressed in terms of the square error (SE) value, which is defined according to the following equation:
SE $=[\text { Forecast }- \text { Actual }]^{2}$
The basic idea for calculating the best global fitness value is to reduce the square error between the defuzzilied value and the real value in the corresponding time series in time (t). When getting to this value, the element coordinates in the PSO function, which gives the optimal value, represent the value of the weights (w_{i}).

- Estimating the forecasting value

After calculating the optimal weights, the prediction values have also calculated based on the evaluation of the rules (If- then) measured before in the previous step for each time series values.

2.6. Proposed procedure

The adaptation procedure for the Box-Jenkins series was applied using the high order fuzzy time series method as a proposed procedure to improve the adequacy of the model. This procedure was done by taking predictive data for the best ARIMA model as a new time series and processing it with a high order fuzzy time series method. The proposed procedure was compared with dual research methods used to find the best in the prediction process by some statistical criteria.

3. Analysis of the total dissolve solid data for drinking water

Water pollution is one of the first issues that attract the interest of researchers and specialists in the field of pollution because of the importance of water and its necessity in all biological processes. Drinking water is the basic element for the formation of communities and the emergence and prosperity of cities. Consequently, water processing is very important in daily life to obtain safe water for human health. The quality of water depends on its physical, chemical and biological properties and the extent to which humans can use it. This requires a specific approach to modify one or more of these properties.
On this basis, standard specifications for water quality have built through several examinations to determine the quality of water. The most important one, which has the total dissolved solids (TDS), had taken from drinking water in the city of Baghdad from January 2004 to December 2018. The examinations are measured in (mg/l) units. The used data and methods have been analysed according to SPSS Var.20, STATISTICA Var.7, and MATLAB 2009b programs.

3.1 Box-Jenkins method

One of the steps that have used in analysing any time series is to draw it to see the trend and stationarity of the series. The seasonality of the time series was tested by using the Jonckheer-Terpstra test of equal value with J$\mathrm{T}=1.104$ when p -value $=0.270$. This is not to reject the null hypothesis, and reaching that data is not seasonal at the significant level of 0.05 . Figure 2 shows that time series have a trend and non-stationary, as illustrated in Figure 3 of the two functions of autocorrelation (AC) and partial autocorrelation (PAC), which shows by drawing the functions that the series is non stationary in mean.

Figure 2. TDS data for drinking water in Baghdad city

Figure 3. AC and PAC for TDS series
A Dickey-Fuller test for data with $\mathrm{DF}=0.534$ was calculated. This value is less than the tabular value of 1.943 with a level of 0.05 . This refers that the null hypothesis is not rejected and the series is non stationary. Thus, the first differences of data were taken. Figure 4 shows the coefficients of AC and PAC. It shows the stationary in the series with $\mathrm{DF}=12.578$, which is greater than the tabular value of 1.943 at a level of 0.05 . This refers to the rejection of the null hypothesis and that the data has stationary.
Based on the stationary data, a number of combinations of statistical models have been applied. Table 1 shows the representation of models. It is clear that the model ARIMA ($3,1,3$) is appropriate for the data, which corresponds to the lowest values in the following criteria: RMSE, MAE, MAPE with the significance of its parameters.

Figure 4. AC and PAC for TDS series after taking the first difference
Table 1. A number of combinations of statistical models to represent the TDS

Criteria	RMSE	MAPE	MAE
ARIMA(0,1,1)		6.938	
ARIMA(0,1,2)	52.876	6.940	38.059
ARIMA(0,1,3)	52.814	7.065	38.657
ARIMA(1,1,0)	53.129	6.943	38.064
ARIMA(1,1,1)	53.050	6.884	37.748
ARIMA(1,1,2)	50.855	6.655	36.937
ARIMA(1,1,3)	50.880	6.656	36.942
ARIMA(2,1,0)	52.977	6.952	38.102
ARIMA(2,1,1)	53.079	6.897	37.842
ARIMA(2,1,2)	50.876	6.657	36.961
ARIMA(2,1,3)	51.006	6.650	36.924
ARIMA(3,1,0)	53.123	6.939	38.046
ARIMA(3,1,1)	53.230	6.900	37.854
ARIMA(3,1,2)	50.972	6.638	36.854
ARIMA(3,1,3)	50.277	6.628	36.830

The estimation of the model parameters ARIMA $(3,1,3)$ is equal to:

$\phi_{1}=$	$-0.536 \phi_{2}=$	$0.195 \phi_{3}=$	0.724	$\theta_{1}=$	-0.486
θ_{2}	$=0.470$	$\theta_{3}=0.986$			
s.e:	0.069	0.078	0.068	0.105	0.062
sig:	0.000	0.013	0.000	0.000	0.000

Accordingly, the selected model will be written in the following form:
$\left(1+0.536 B-0.195 B^{2}-0.724 B^{3}\right)(1-B) Z_{t}=\left(1+0.486 B-0.470 B^{2}-0.986 B^{3}\right) a_{t}$
To compute the accuracy of the ARIMA(3,1,3), the Q-tests for Box-Pierce and Ljung-Box were established for a series of errors in the model in the case of $\mathrm{Q}_{\mathrm{B}-\mathrm{P}}=48.775, \mathrm{Q}_{\mathrm{L}-\mathrm{B}}=50.872$. The value of χ^{2} table value based on d.f $=39$ and $\alpha=0.05$ is equal to 54.561 obviously. The null hypothesis is not rejected. This refers that the selected model is appropriate for representing the TDS data in for the period of study and that the model errors have a random characteristic. The AC and PAC coefficients for the residuals series of the model were plotted after checking their coefficients within the confidence intervals $\left\{ \pm 1.96(n)^{-\frac{1}{2}}\right\}$ with 95% confidence level, Figure 5 shows the significance of some correlation coefficients at a number of lags and equal to 5 . This is not effective as total numbers of lags equal to 45 , because there are high fluctuations and few series of errors. Thus, the errors of the model can be considered to have a white noise.

Figure 5. AC and PAC for the residual's model of the $\operatorname{ARIMA}(3,1,3)$
Fig. 6 shows the series observations and predictive values according to the selected model.

Figure 6. Observational and predictive values of the $\operatorname{ARIMA}(3,1,3)$ model for TDS series

3.2. High order fuzzy time series method

Monthly data for the TDS has taken in to consideration. The steps of the high order fuzzy time series model prediction method have applied through the fuzzification and defuzzification stages as follows:

- Fuzzification stage

Time series data have been fuzzified by using the trapezoidal membership functon (TMF)in fuzzification data. It requires to know the number of fuzzy sets and the length of each interval for this sets. The following steps have been applied:

- Average distance is equal to $\mathrm{AD}=2.4246$
- Average distance rate $(\mathrm{ADR})=1.7535$
- The limits of the universe of discourse (U$)=[362.2465,799.7535]$
- Number of fuzzy sets (n) = 124

Therefore, the fuzzy sets of series data, which are 124 fuzzy sets, can be defined by using the (TMF) as shown in Table 2.

Table 2. Fuzzy sets of the high order fuzzy model for TDS series

Fuzzy Sets	Fuzzy Numbers				Fuzzy Sets	Fuzzy Numbers			
A_{1}	362.2465	364	365.7535	367.507	A_{63}	579.6805	581.434	583.1875	584.941
A_{2}	365.7535	367.507	369.2605	371.014	A_{64}	583.1875	584.941	586.6945	588.448
A_{3}	369.2605	371.014	372.7675	374.521	A_{65}	586.6945	588.448	590.2015	591.955
A_{4}	372.7675	374.521	376.2745	378.028	A_{66}	590.2015	591.955	593.7085	595.462
A_{5}	376.2745	378.028	379.7815	381.535	A_{67}	593.7085	595.462	597.2155	598.969
A_{6}	379.7815	381.535	383.2885	385.042	A_{68}	597.2155	598.969	600.7225	602.476
A_{7}	383.2885	385.042	386.7955	388.549	A_{69}	600.7225	602.476	604.2295	605.983
A_{8}	386.7955	388.549	390.3025	392.056	A_{70}	604.2295	605.983	607.7365	609.49
A_{9}	390.3025	392.056	393.8095	395.563	A_{71}	607.7365	609.49	611.2435	612.997
A_{10}	393.8095	395.563	397.3165	399.07	A_{72}	611.2435	612.997	614.7505	616.504
A_{11}	397.3165	399.07	400.8235	402.577	A_{73}	614.7505	616.504	618.2575	620.011
A_{12}	400.8235	402.577	404.3305	406.084	A_{74}	618.2575	620.011	621.7645	623.518
A_{13}	404.3305	406.084	407.8375	409.591	A_{75}	621.7645	623.518	625.2715	627.025
A_{14}	407.8375	409.591	411.3445	413.098	A_{76}	625.2715	627.025	628.7785	630.532
A_{15}	411.3445	413.098	414.8515	416.605	A_{77}	628.7785	630.532	632.2855	634.039
A_{16}	414.8515	416.605	418.3585	420.112	A_{78}	632.2855	634.039	635.7925	637.546
A_{17}	418.3585	420.112	421.8655	423.619	A_{79}	635.7925	637.546	639.2995	641.053
A_{18}	421.8655	423.619	425.3725	427.126	A_{80}	639.2995	641.053	642.8065	644.56
A_{19}	425.3725	427.126	428.8795	430.633	A_{81}	642.8065	644.56	646.3135	648.067
A_{20}	428.8795	430.633	432.3865	434.14	A_{82}	646.3135	648.067	649.8205	651.574
A_{21}	432.3865	434.14	435.8935	437.647	A_{83}	649.8205	651.574	653.3275	655.081
A_{22}	435.8935	437.647	439.4005	441.154	A_{84}	653.3275	655.081	656.8345	658.588
A_{23}	439.4005	441.154	442.9075	444.661	A_{85}	656.8345	658.588	660.3415	662.095
A_{24}	442.9075	444.661	446.4145	448.168	A_{86}	660.3415	662.095	663.8485	665.602
A_{25}	446.4145	448.168	449.9215	451.675	A_{87}	663.8485	665.602	667.3555	669.109
A_{26}	449.9215	451.675	453.4285	455.182	A_{88}	667.3555	669.109	670.8625	672.616
A_{27}	453.4285	455.182	456.9355	458.689	A_{89}	670.8625	672.616	674.3695	676.123
A_{28}	456.9355	458.689	460.4425	462.196	A_{90}	674.3695	676.123	677.8765	679.63
A_{29}	460.4425	462.196	463.9495	465.703	A_{91}	677.8765	679.63	681.3835	683.137
A_{30}	463.9495	465.703	467.4565	469.21	A_{92}	681.3835	683.137	684.8905	686.644
A_{31}	467.4565	469.21	470.9635	472.717	A_{93}	684.8905	686.644	688.3975	690.151
A_{32}	470.9635	472.717	474.4705	476.224	A_{94}	688.3975	690.151	691.9045	693.658
A_{33}	474.4705	476.224	477.9775	479.731	A_{95}	691.9045	693.658	695.4115	697.165
A_{34}	477.9775	479.731	481.4845	483.238	A_{96}	695.4115	697.165	698.9185	700.672
A_{35}	481.4845	483.238	484.9915	486.745	A_{97}	698.9185	700.672	702.4255	704.179
A_{36}	484.9915	486.745	488.4985	490.252	A_{98}	702.4255	704.179	705.9325	707.686
A_{37}	488.4985	490.252	492.0055	493.759	A99	705.9325	707.686	709.4395	711.193
A_{38}	492.0055	493.759	495.5125	497.266	A_{100}	709.4395	711.193	712.9465	714.7
A_{39}	495.5125	497.266	499.0195	500.773	A_{101}	712.9465	714.7	716.4535	718.207
A_{40}	499.0195	500.773	502.5265	504.28	A_{102}	716.4535	718.207	719.9605	721.714
A_{41}	502.5265	504.28	506.0335	507.787	A_{103}	719.9605	721.714	723.4675	725.221
A_{42}	506.0335	507.787	509.5405	511.294	A_{104}	723.4675	725.221	726.9745	728.728
A_{43}	509.5405	511.294	513.0475	514.801	A_{105}	726.9745	728.728	730.4815	732.235
A_{44}	513.0475	514.801	516.5545	518.308	A_{106}	730.4815	732.235	733.9885	735.742
A_{45}	516.5545	518.308	520.0615	521.815	A_{107}	733.9885	735.742	737.4955	739.249
A_{46}	520.0615	521.815	523.5685	525.322	A_{108}	737.4955	739.249	741.0025	742.756
A_{47}	523.5685	525.322	527.0755	528.829	A_{109}	741.0025	742.756	744.5095	746.263
A_{48}	527.0755	528.829	530.5825	532.336	A_{110}	744.5095	746.263	748.0165	749.77
A_{49}	530.5825	532.336	534.0895	535.843	A_{111}	748.0165	749.77	751.5235	753.277
A_{50}	534.0895	535.843	537.5965	539.35	A_{112}	751.5235	753.277	755.0305	756.784
A_{51}	537.5965	539.35	541.1035	542.857	A_{113}	755.0305	756.784	758.5375	760.291
A_{52}	541.1035	542.857	544.6105	546.364	A_{114}	758.5375	760.291	762.0445	763.798

A_{53}	544.6105	546.364	548.1175	549.871	$\mathrm{~A}_{115}$	762.0445	763.798	765.5515	767.305
$\mathrm{~A}_{54}$	548.1175	549.871	551.6245	553.378	$\mathrm{~A}_{116}$	765.5515	767.305	769.0585	770.812
$\mathrm{~A}_{55}$	551.6245	553.378	555.1315	556.885	$\mathrm{~A}_{117}$	769.0585	770.812	772.5655	774.319
$\mathrm{~A}_{56}$	555.1315	556.885	558.6385	560.392	$\mathrm{~A}_{118}$	772.5655	774.319	776.0725	777.826
$\mathrm{~A}_{57}$	558.6385	560.392	562.1455	563.899	$\mathrm{~A}_{119}$	776.0725	777.826	779.5795	781.333
$\mathrm{~A}_{58}$	562.1455	563.899	565.6525	567.406	$\mathrm{~A}_{120}$	779.5795	781.333	783.0865	784.84
$\mathrm{~A}_{59}$	565.6525	567.406	569.1595	570.913	$\mathrm{~A}_{121}$	783.0865	784.84	786.5935	788.347
$\mathrm{~A}_{60}$	569.1595	570.913	572.6665	574.42	$\mathrm{~A}_{122}$	786.5935	788.347	790.1005	791.854
$\mathrm{~A}_{61}$	572.6665	574.42	576.1735	577.927	$\mathrm{~A}_{123}$	790.1005	791.854	793.6075	795.361
$\mathrm{~A}_{62}$	576.1735	577.927	579.6805	581.434	$\mathrm{~A}_{124}$	793.6075	795.361	797.1145	798.868

By defining the fuzzy sets, the time series data has been fuzzified by converting their observations into linguistic variables. Table 3 explains the fuzzification of data to determine the membership function for each linguistic variable. For example, it is noted that the value of the test in January 2004, which is equal to 473, lies within the interval of the linguistic variable A_{32}. It is based on the following fuzzy numbers from Table 2: (470.9635, 472.717, 474.4705, 476.224).

Table 3. Fuzzification the data of TDS for the high order fuzzy model

Linguistic Variable	Month	Year	Linguistic Variable	Month	Year	Linguistic Variable	Month	Year	Linguistic Variable	Month	Year
A_{110}	Nov		A_{64}	Nov		A_{72}	Nov				
A_{104}	Dec		A_{84}	Dec		A_{75}	Dec				

- Defuzzification stage

This stage involves a number of steps to arrive at the prediction process. The FSGS fuzzy sets are established as in Table 4.

Table 4. FSGs for TDS series (high order fuzzy model)

\#	FSGS								
1	$\left\{\mathrm{A}_{32}, \mathrm{~A}_{17}\right\}$	37	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{52}\right\}$	73	$\left\{\mathrm{A}_{26}, \mathrm{~A}_{29}\right\}$	109	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{64}\right\}$	145	\{ $\left.\mathrm{A}_{77}, \mathrm{~A}_{79}\right\}$
2	$\left\{\mathrm{A}_{17}, \mathrm{~A}_{2}\right\}$	38	$\left\{\mathrm{A}_{52}, \mathrm{~A}_{40}\right\}$	74	$\left\{\mathrm{A}_{29}, \mathrm{~A}_{20}\right\}$	110	$\left\{\mathrm{A}_{64}, \mathrm{~A}_{31}\right\}$	146	$\left\{\mathrm{A}_{79}, \mathrm{~A}_{74}\right\}$
3	$\left\{\mathrm{A}_{2}, \mathrm{~A}_{9}\right\}$	39	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{38}\right\}$	75	$\left\{\mathrm{A}_{20}, \mathrm{~A}_{37}\right\}$	111	$\left\{\mathrm{A}_{31}, \mathrm{~A}_{44}\right\}$	147	$\left\{\mathrm{A}_{74}, \mathrm{~A}_{65}\right\}$
4	$\left\{\mathrm{A}_{9}, \mathrm{~A}_{10}\right\}$	40	$\left\{\mathrm{A}_{38}, \mathrm{~A}_{28}\right\}$	76	$\left\{\mathrm{A}_{37}, \mathrm{~A}_{32}\right\}$	112	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{53}\right\}$	148	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{58}\right\}$
5	$\left\{\mathrm{A}_{10}, \mathrm{~A}_{1}\right\}$	41	$\left\{\mathrm{A}_{28}, \mathrm{~A}_{22}\right\}$	77	$\left\{\mathrm{A}_{32}, \mathrm{~A}_{19}\right\}$	113	$\left\{\mathrm{A}_{53}, \mathrm{~A}_{52}\right\}$	149	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{49}\right\}$
6	$\left\{\mathrm{A}_{1}, \mathrm{~A}_{4}\right\}$	42	$\left\{\mathrm{A}_{22}, \mathrm{~A}_{42}\right\}$	78	$\left\{\mathrm{A}_{19}, \mathrm{~A}_{23}\right\}$	114	$\left\{\mathrm{A}_{52}, \mathrm{~A}_{40}\right\}$	150	$\left\{\mathrm{A}_{49}, \mathrm{~A}_{56}\right\}$
7	$\left\{\mathrm{A}_{4}, \mathrm{~A}_{4}\right\}$	43	$\left\{\mathrm{A}_{42}, \mathrm{~A}_{49}\right\}$	79	$\left\{\mathrm{A}_{23}, \mathrm{~A}_{24}\right\}$	115	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{60}\right\}$	151	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{59}\right\}$
8	$\left\{\mathrm{A}_{4}, \mathrm{~A}_{8}\right\}$	44	$\left\{\mathrm{A}_{49}, \mathrm{~A}_{58}\right\}$	80	$\left\{\mathrm{A}_{24}, \mathrm{~A}_{33}\right\}$	116	$\left\{\mathrm{A}_{60}, \mathrm{~A}_{61}\right\}$	152	$\left\{\mathrm{A}_{59}, \mathrm{~A}_{64}\right\}$
9	\{ $\mathrm{A}_{8}, \mathrm{~A}_{36}$ \}	45	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{59}\right\}$	81	$\left\{\mathrm{A}_{33}, \mathrm{~A}_{40}\right\}$	117	$\left\{\mathrm{A}_{61}, \mathrm{~A}_{73}\right\}$	153	$\left\{\mathrm{A}_{64}, \mathrm{~A}_{67}\right\}$
10	$\left\{\mathrm{A}_{36}, \mathrm{~A}_{42}\right\}$	46	$\left\{\mathrm{A}_{59}, \mathrm{~A}_{110}\right\}$	82	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{53}\right\}$	118	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{84}\right\}$	154	$\left\{\mathrm{A}_{67}, \mathrm{~A}_{75}\right\}$
11	$\left\{\mathrm{A}_{42}, \mathrm{~A}_{39}\right\}$	47	$\left\{\mathrm{A}_{110}, \mathrm{~A}_{104}\right\}$	83	$\left\{\mathrm{A}_{53}, \mathrm{~A}_{106}\right\}$	119	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{82}\right\}$	155	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{72}\right\}$
12	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{58}\right\}$	48	$\left\{\mathrm{A}_{104}, \mathrm{~A}_{100}\right\}$	84	$\left\{\mathrm{A}_{106}, \mathrm{~A}_{119}\right\}$	120	$\left\{\mathrm{A}_{82}, \mathrm{~A}_{85}\right\}$	156	$\left\{\mathrm{A}_{72}, \mathrm{~A}_{68}\right\}$
13	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{66}\right\}$	49	$\left\{\mathrm{A}_{100}, \mathrm{~A}_{83}\right\}$	85	$\left\{\mathrm{A}_{119}, \mathrm{~A}_{81}\right\}$	121	$\left\{\mathrm{A}_{85}, \mathrm{~A}_{73}\right\}$	157	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{72}\right\}$
14	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{55}\right\}$	50	$\left\{\mathrm{A}_{83}, \mathrm{~A}_{60}\right\}$	86	$\left\{\mathrm{A}_{81}, \mathrm{~A}_{54}\right\}$	122	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{47}\right\}$	158	$\left\{\mathrm{A}_{72}, \mathrm{~A}_{58}\right\}$
15	$\left\{\mathrm{A}_{55}, \mathrm{~A}_{42}\right\}$	51	$\left\{\mathrm{A}_{60}, \mathrm{~A}_{40}\right\}$	87	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{39}\right\}$	123	$\left\{\mathrm{A}_{47}, \mathrm{~A}_{40}\right\}$	159	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{62}\right\}$
16	$\left\{\mathrm{A}_{42}, \mathrm{~A}_{46}\right\}$	52	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{84}\right\}$	88	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{34}\right\}$	124	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{43}\right\}$	160	$\left\{\mathrm{A}_{62}, \mathrm{~A}_{68}\right\}$
17	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{21}\right\}$	53	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{100}\right\}$	89	$\left\{\mathrm{A}_{34}, \mathrm{~A}_{23}\right\}$	125	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{43}\right\}$	161	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{51}\right\}$
18	$\left\{\mathrm{A}_{21}, \mathrm{~A}_{24}\right\}$	54	$\left\{\mathrm{A}_{100}, \mathrm{~A}_{105}\right\}$	90	$\left\{\mathrm{A}_{23}, \mathrm{~A}_{33}\right\}$	126	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{50}\right\}$	162	$\left\{\mathrm{A}_{51}, \mathrm{~A}_{54}\right\}$
19	$\left\{\mathrm{A}_{24}, \mathrm{~A}_{38}\right\}$	55	$\left\{\mathrm{A}_{105}, \mathrm{~A}_{108}\right\}$	91	$\left\{\mathrm{A}_{33}, \mathrm{~A}_{28}\right\}$	127	$\left\{\mathrm{A}_{50}, \mathrm{~A}_{48}\right\}$	163	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{59}\right\}$
20	$\left\{\mathrm{A}_{38}, \mathrm{~A}_{39}\right\}$	56	$\left\{\mathrm{A}_{108}, \mathrm{~A}_{117}\right\}$	92	$\left\{\mathrm{A}_{28}, \mathrm{~A}_{56}\right\}$	128	$\left\{\mathrm{A}_{48}, \mathrm{~A}_{54}\right\}$	164	$\left\{\mathrm{A}_{59}, \mathrm{~A}_{65}\right.$ \}
21	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{58}\right\}$	57	$\left\{\mathrm{A}_{117}, \mathrm{~A}_{124}\right\}$	93	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{50}\right\}$	129	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{73}\right\}$	165	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{70}\right\}$
22	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{65}\right\}$	58	$\left\{\mathrm{A}_{124}, \mathrm{~A}_{114}\right\}$	94	$\left\{\mathrm{A}_{50}, \mathrm{~A}_{64}\right\}$	130	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{69}\right\}$	166	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{73}\right\}$
23	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{56}\right\}$	59	$\left\{\mathrm{A}_{114}, \mathrm{~A}_{115}\right\}$	95	$\left\{\mathrm{A}_{64}, \mathrm{~A}_{84}\right\}$	131	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{66}\right\}$	167	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{74}\right\}$
24	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{80}\right\}$	60	$\left\{\mathrm{A}_{115}, \mathrm{~A}_{112}\right\}$	96	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{83}\right\}$	132	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{71}\right\}$	168	$\left\{\mathrm{A}_{74}, \mathrm{~A}_{71}\right\}$
25	$\left\{\mathrm{A}_{80}, \mathrm{~A}_{70}\right\}$	61	$\left\{\mathrm{A}_{112}, \mathrm{~A}_{124}\right\}$	97	$\left\{\mathrm{A}_{83}, \mathrm{~A}_{56}\right\}$	133	$\left\{\mathrm{A}_{71}, \mathrm{~A}_{69}\right\}$	169	$\left\{\mathrm{A}_{71}, \mathrm{~A}_{65}\right\}$
26	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{37}\right\}$	62	$\left\{\mathrm{A}_{124}, \mathrm{~A}_{63}\right\}$	98	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{54}\right\}$	134	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{61}\right\}$	170	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{62}\right\}$
27	$\left\{\mathrm{A}_{37}, \mathrm{~A}_{43}\right\}$	63	$\left\{\mathrm{A}_{63}, \mathrm{~A}_{37}\right\}$	99	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{45}\right\}$	135	$\left\{\mathrm{A}_{61}, \mathrm{~A}_{51}\right\}$	171	$\left\{\mathrm{A}_{62}, \mathrm{~A}_{64}\right\}$
28	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{29}\right\}$	64	$\left\{\mathrm{A}_{37}, \mathrm{~A}_{24}\right\}$	100	$\left\{\mathrm{A}_{45}, \mathrm{~A}_{32}\right\}$	136	$\left\{\mathrm{A}_{51}, \mathrm{~A}_{58}\right\}$	172	$\left\{\mathrm{A}_{64}, \mathrm{~A}_{68}\right\}$
29	$\left\{\mathrm{A}_{29}, \mathrm{~A}_{7}\right\}$	65	$\left\{\mathrm{A}_{24}, \mathrm{~A}_{19}\right\}$	101	$\left\{\mathrm{A}_{32}, \mathrm{~A}_{45}\right\}$	137	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{49}\right\}$	173	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{63}\right\}$
30	$\left\{\mathrm{A}_{7}, \mathrm{~A}_{25}\right\}$	66	$\left\{\mathrm{A}_{19}, \mathrm{~A}_{43}\right\}$	102	$\left\{\mathrm{A}_{45}, \mathrm{~A}_{73}\right\}$	138	$\left\{\mathrm{A}_{49}, \mathrm{~A}_{44}\right\}$	174	$\left\{\mathrm{A}_{63}, \mathrm{~A}_{71}\right\}$
31	$\left\{\mathrm{A}_{25}, \mathrm{~A}_{42}\right\}$	67	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{41}\right\}$	103	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{44}\right\}$	139	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{50}\right\}$	175	$\left\{\mathrm{A}_{71}, \mathrm{~A}_{57}\right\}$
32	$\left\{\mathrm{A}_{42}, \mathrm{~A}_{69}\right\}$	68	$\left\{\mathrm{A}_{41}, \mathrm{~A}_{30}\right\}$	104	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{77}\right\}$	140	$\left\{\mathrm{A}_{50}, \mathrm{~A}_{70}\right\}$	176	$\left\{\mathrm{A}_{57}, \mathrm{~A}_{54}\right\}$
33	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{77}\right\}$	69	$\left\{\mathrm{A}_{30}, \mathrm{~A}_{39}\right\}$	105	$\left\{\mathrm{A}_{77}, \mathrm{~A}_{70}\right\}$	141	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{66}\right\}$	177	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{52}\right\}$
34	$\left\{\mathrm{A}_{77}, \mathrm{~A}_{34}\right\}$	70	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{44}\right\}$	106	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{67}\right\}$	142	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{72}\right\}$	178	$\left\{\mathrm{A}_{52}, \mathrm{~A}_{51}\right\}$
35	$\left\{\mathrm{A}_{34}, \mathrm{~A}_{35}\right\}$	71	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{45}\right\}$	107	$\left\{\mathrm{A}_{67}, \mathrm{~A}_{74}\right\}$	143	$\left\{\mathrm{A}_{72}, \mathrm{~A}_{75}\right\}$	179	$\left\{\mathrm{A}_{51}, \mathrm{~A}_{53}\right\}$
36	$\left\{\mathrm{A}_{35}, \mathrm{~A}_{66}\right\}$	72	$\left\{\mathrm{A}_{45}, \mathrm{~A}_{26}\right\}$	108	$\left\{\mathrm{A}_{74}, \mathrm{~A}_{68}\right\}$	144	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{77}\right\}$		

From Table 4, it is clear that there are frequencies in some elements of fuzzy set group sets (FSGS). The group $\left\{\mathrm{A}_{39}, \mathrm{~A}_{58}\right\}$ and group $\left\{\mathrm{A}_{52}, \mathrm{~A}_{40}\right\}$ were frequented twice. Therefore, a higher order is taken for these frequent groups to obtain FSGs that do not contain frequent sets as in Table 5.

Table 5. FSGS for the TDS series after taking the higher order

| $\#$ | FSGS | $\#$ | FSGS | $\#$ | FSGS | $\#$ | FSGS | \# | FSGS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\left\{\mathrm{~A}_{32}, \mathrm{~A}_{17}\right\}$ | 37 | $\left\{\mathrm{~A}_{66}, \mathrm{~A}_{52}\right\}$ | 73 | $\left\{\mathrm{~A}_{26}, \mathrm{~A}_{29}\right\}$ | 109 | $\left\{\mathrm{~A}_{68}, \mathrm{~A}_{64}\right\}$ | 145 | $\left\{\mathrm{~A}_{77}, \mathrm{~A}_{79}\right\}$ |
| 2 | $\left\{\mathrm{~A}_{17}, \mathrm{~A}_{2}\right\}$ | 38 | $\left\{\mathrm{~A}_{66}, \mathrm{~A}_{52}, \mathrm{~A}_{40}\right\}$ | 74 | $\left\{\mathrm{~A}_{29}, \mathrm{~A}_{20}\right\}$ | 110 | $\left\{\mathrm{~A}_{64}, \mathrm{~A}_{31}\right\}$ | 146 | $\left\{\mathrm{~A}_{79}, \mathrm{~A}_{74}\right\}$ |
| 3 | $\left\{\mathrm{~A}_{2}, \mathrm{~A}_{9}\right\}$ | 39 | $\left\{\mathrm{~A}_{40}, \mathrm{~A}_{38}\right\}$ | 75 | $\left\{\mathrm{~A}_{20}, \mathrm{~A}_{37}\right\}$ | 111 | $\left\{\mathrm{~A}_{31}, \mathrm{~A}_{44}\right\}$ | 147 | $\left\{\mathrm{~A}_{74}, \mathrm{~A}_{65}\right\}$ |
| 4 | $\left\{\mathrm{~A}_{9}, \mathrm{~A}_{10}\right\}$ | 40 | $\left\{\mathrm{~A}_{38}, \mathrm{~A}_{28}\right\}$ | 76 | $\left\{\mathrm{~A}_{37}, \mathrm{~A}_{32}\right\}$ | 112 | $\left\{\mathrm{~A}_{44}, \mathrm{~A}_{53}\right\}$ | 148 | $\left\{\mathrm{~A}_{65}, \mathrm{~A}_{58}\right\}$ |
| 5 | $\left\{\mathrm{~A}_{10}, \mathrm{~A}_{1}\right\}$ | 41 | $\left\{\mathrm{~A}_{28}, \mathrm{~A}_{22}\right\}$ | 77 | $\left\{\mathrm{~A}_{32}, \mathrm{~A}_{19}\right\}$ | 113 | $\left\{\mathrm{~A}_{53}, \mathrm{~A}_{52}\right\}$ | 149 | $\left\{\mathrm{~A}_{58}, \mathrm{~A}_{49}\right\}$ |
| 6 | $\left\{\mathrm{~A}_{1}, \mathrm{~A}_{4}\right\}$ | 42 | $\left\{\mathrm{~A}_{22}, \mathrm{~A}_{42}\right\}$ | 78 | $\left\{\mathrm{~A}_{19}, \mathrm{~A}_{23}\right\}$ | 114 | $\left\{\mathrm{~A}_{53}, \mathrm{~A}_{52}, \mathrm{~A}_{40}\right\}$ | 150 | $\left\{\mathrm{~A}_{49}, \mathrm{~A}_{56}\right\}$ |
| 7 | $\left\{\mathrm{~A}_{4}, \mathrm{~A}_{4}\right\}$ | 43 | $\left\{\mathrm{~A}_{42}, \mathrm{~A}_{49}\right\}$ | 79 | $\left\{\mathrm{~A}_{23}, \mathrm{~A}_{24}\right\}$ | 115 | $\left\{\mathrm{~A}_{40}, \mathrm{~A}_{60}\right\}$ | 151 | $\left\{\mathrm{~A}_{56}, \mathrm{~A}_{59}\right\}$ |
| 8 | $\left\{\mathrm{~A}_{4}, \mathrm{~A}_{8}\right\}$ | 44 | $\left\{\mathrm{~A}_{49}, \mathrm{~A}_{58}\right\}$ | 80 | $\left\{\mathrm{~A}_{24}, \mathrm{~A}_{33}\right\}$ | 116 | $\left\{\mathrm{~A}_{60}, \mathrm{~A}_{61}\right\}$ | 152 | $\left\{\mathrm{~A}_{59}, \mathrm{~A}_{64}\right\}$ |
| 9 | $\left\{\mathrm{~A}_{8}, \mathrm{~A}_{36}\right\}$ | 45 | $\left\{\mathrm{~A}_{58}, \mathrm{~A}_{59}\right\}$ | 81 | $\left\{\mathrm{~A}_{33}, \mathrm{~A}_{40}\right\}$ | 117 | $\left\{\mathrm{~A}_{61}, \mathrm{~A}_{73}\right\}$ | 153 | $\left\{\mathrm{~A}_{64}, \mathrm{~A}_{67}\right\}$ |
| 10 | $\left\{\mathrm{~A}_{36}, \mathrm{~A}_{42}\right\}$ | 46 | $\left\{\mathrm{~A}_{59}, \mathrm{~A}_{110}\right\}$ | 82 | $\left\{\mathrm{~A}_{40}, \mathrm{~A}_{53}\right\}$ | 118 | $\left\{\mathrm{~A}_{73}, \mathrm{~A}_{84}\right\}$ | 154 | $\left\{\mathrm{~A}_{67}, \mathrm{~A}_{75}\right\}$ |
| 11 | $\left\{\mathrm{~A}_{42}, \mathrm{~A}_{39}\right\}$ | 47 | $\left\{\mathrm{~A}_{110}, \mathrm{~A}_{104}\right\}$ | 83 | $\left\{\mathrm{~A}_{53}, \mathrm{~A}_{106}\right\}$ | 119 | $\left\{\mathrm{~A}_{84}, \mathrm{~A}_{82}\right\}$ | 155 | $\left\{\mathrm{~A}_{75}, \mathrm{~A}_{72}\right\}$ |
| 12 | $\left\{\mathrm{~A}_{42}, \mathrm{~A}_{39}, \mathrm{~A}_{58}\right\}$ | 48 | $\left\{\mathrm{~A}_{104}, \mathrm{~A}_{100}\right\}$ | 84 | $\left\{\mathrm{~A}_{106}, \mathrm{~A}_{119}\right\}$ | 120 | $\left\{\mathrm{~A}_{42}, \mathrm{~A}_{85}\right\}$ | 156 | $\left\{\mathrm{~A}_{72}, \mathrm{~A}_{68}\right\}$ |
| 13 | $\left\{\mathrm{~A}_{58}, \mathrm{~A}_{66}\right\}$ | 49 | $\left\{\mathrm{~A}_{100}, \mathrm{~A}_{83}\right\}$ | 85 | $\left\{\mathrm{~A}_{119}, \mathrm{~A}_{81}\right\}$ | 121 | $\left\{\mathrm{~A}_{85}, \mathrm{~A}_{73}\right\}$ | 157 | $\left\{\mathrm{~A}_{68}, \mathrm{~A}_{72}\right\}$ |
| 14 | $\left\{\mathrm{~A}_{66}, \mathrm{~A}_{55}\right\}$ | 50 | $\left\{\mathrm{~A}_{83}, \mathrm{~A}_{60}\right\}$ | 86 | $\left\{\mathrm{~A}_{81}, \mathrm{~A}_{54}\right\}$ | 122 | $\left\{\mathrm{~A}_{73}, \mathrm{~A}_{47}\right\}$ | 158 | $\left\{\mathrm{~A}_{72}, \mathrm{~A}_{58}\right\}$ |
| 15 | $\left\{\mathrm{~A}_{55}, \mathrm{~A}_{42}\right\}$ | 51 | $\left\{\mathrm{~A}_{60}, \mathrm{~A}_{40}\right\}$ | 87 | $\left\{\mathrm{~A}_{54}, \mathrm{~A}_{39}\right\}$ | 123 | $\left\{\mathrm{~A}_{47}, \mathrm{~A}_{40}\right\}$ | 159 | $\left\{\mathrm{~A}_{58}, \mathrm{~A}_{62}\right\}$ |

16	$\left\{\mathrm{A}_{42}, \mathrm{~A}_{46}\right\}$	52	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{84}\right\}$	88	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{34}\right\}$	124	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{43}\right\}$	160	$\left\{\mathrm{A}_{62}, \mathrm{~A}_{68}\right\}$
17	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{21}\right\}$	53	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{100}\right\}$	89	$\left\{\mathrm{A}_{34}, \mathrm{~A}_{23}\right\}$	125	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{43}\right\}$	161	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{51}\right\}$
18	$\left\{\mathrm{A}_{21}, \mathrm{~A}_{24}\right\}$	54	$\left\{\mathrm{A}_{100}, \mathrm{~A}_{105}\right\}$	90	$\left\{\mathrm{A}_{23}, \mathrm{~A}_{33}\right\}$	126	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{50}\right\}$	162	$\left\{\mathrm{A}_{51}, \mathrm{~A}_{54}\right\}$
19	$\left\{\mathrm{A}_{24}, \mathrm{~A}_{38}\right\}$	55	$\left\{\mathrm{A}_{105}, \mathrm{~A}_{108}\right\}$	91	$\left\{\mathrm{A}_{33}, \mathrm{~A}_{28}\right\}$	127	$\left\{\mathrm{A}_{50}, \mathrm{~A}_{48}\right\}$	163	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{59}\right\}$
20	$\left\{\mathrm{A}_{38}, \mathrm{~A}_{39}\right\}$	56	$\left\{\mathrm{A}_{108}, \mathrm{~A}_{117}\right\}$	92	$\left\{\mathrm{A}_{28}, \mathrm{~A}_{56}\right\}$	128	\{ $\left.\mathrm{A}_{48}, \mathrm{~A}_{54}\right\}$	164	$\left\{\mathrm{A}_{59}, \mathrm{~A}_{65}\right\}$
21	$\left\{\mathrm{A}_{38}, \mathrm{~A}_{39}, \mathrm{~A}_{58}\right\}$	57	$\left\{\mathrm{A}_{117}, \mathrm{~A}_{124}\right\}$	93	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{50}\right\}$	129	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{73}\right\}$	165	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{70}\right\}$
22	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{65}\right\}$	58	$\left\{\mathrm{A}_{124}, \mathrm{~A}_{114}\right\}$	94	$\left\{\mathrm{A}_{50}, \mathrm{~A}_{64}\right\}$	130	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{69}\right\}$	166	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{73}\right\}$
23	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{56}\right\}$	59	$\left\{\mathrm{A}_{114}, \mathrm{~A}_{115}\right\}$	95	$\left\{\mathrm{A}_{64}, \mathrm{~A}_{84}\right\}$	131	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{66}\right\}$	167	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{74}\right\}$
24	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{80}\right\}$	60	$\left\{\mathrm{A}_{115}, \mathrm{~A}_{112}\right\}$	96	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{83}\right\}$	132	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{71}\right\}$	168	$\left\{\mathrm{A}_{74}, \mathrm{~A}_{71}\right\}$
25	$\left\{\mathrm{A}_{80}, \mathrm{~A}_{70}\right\}$	61	$\left\{\mathrm{A}_{112}, \mathrm{~A}_{124}\right\}$	97	$\left\{\mathrm{A}_{83}, \mathrm{~A}_{56}\right\}$	133	$\left\{\mathrm{A}_{71}, \mathrm{~A}_{69}\right\}$	169	$\left\{\mathrm{A}_{71}, \mathrm{~A}_{65}\right\}$
26	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{37}\right\}$	62	$\left\{\mathrm{A}_{124}, \mathrm{~A}_{63}\right\}$	98	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{54}\right\}$	134	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{61}\right\}$	170	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{62}\right\}$
27	$\left\{\mathrm{A}_{37}, \mathrm{~A}_{43}\right\}$	63	$\left\{\mathrm{A}_{63}, \mathrm{~A}_{37}\right\}$	99	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{45}\right\}$	135	$\left\{\mathrm{A}_{61}, \mathrm{~A}_{51}\right\}$	171	$\left\{\mathrm{A}_{62}, \mathrm{~A}_{64}\right\}$
28	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{29}\right\}$	64	$\left\{\mathrm{A}_{37}, \mathrm{~A}_{24}\right\}$	100	$\left\{\mathrm{A}_{45}, \mathrm{~A}_{32}\right\}$	136	$\left\{\mathrm{A}_{51}, \mathrm{~A}_{58}\right\}$	172	$\left\{\mathrm{A}_{64}, \mathrm{~A}_{68}\right\}$
29	$\left\{\mathrm{A}_{29}, \mathrm{~A}_{7}\right\}$	65	$\left\{\mathrm{A}_{24}, \mathrm{~A}_{19}\right\}$	101	$\left\{\mathrm{A}_{32}, \mathrm{~A}_{45}\right\}$	137	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{49}\right\}$	173	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{63}\right\}$
30	$\left\{\mathrm{A}_{7}, \mathrm{~A}_{25}\right\}$	66	$\left\{\mathrm{A}_{19}, \mathrm{~A}_{43}\right\}$	102	$\left\{\mathrm{A}_{45}, \mathrm{~A}_{73}\right\}$	138	\{ $\mathrm{A}_{49}, \mathrm{~A}_{44}$ \}	174	$\left\{\mathrm{A}_{63}, \mathrm{~A}_{71}\right\}$
31	$\left\{\mathrm{A}_{25}, \mathrm{~A}_{42}\right\}$	67	$\left\{\mathrm{A}_{43}, \mathrm{~A}_{41}\right\}$	103	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{44}\right\}$	139	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{50}\right\}$	175	$\left\{\mathrm{A}_{71}, \mathrm{~A}_{57}\right\}$
32	$\left\{\mathrm{A}_{42}, \mathrm{~A}_{69}\right\}$	68	$\left\{\mathrm{A}_{41}, \mathrm{~A}_{30}\right\}$	104	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{77}\right\}$	140	$\left\{\mathrm{A}_{50}, \mathrm{~A}_{70}\right\}$	176	$\left\{\mathrm{A}_{57}, \mathrm{~A}_{54}\right\}$
33	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{77}\right\}$	69	$\left\{\mathrm{A}_{30}, \mathrm{~A}_{39}\right\}$	105	$\left\{\mathrm{A}_{77}, \mathrm{~A}_{70}\right\}$	141	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{66}\right\}$	177	$\left\{\mathrm{A}_{54}, \mathrm{~A}_{52}\right\}$
34	$\left\{\mathrm{A}_{77}, \mathrm{~A}_{34}\right\}$	70	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{44}\right\}$	106	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{67}\right\}$	142	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{72}\right\}$	178	$\left\{\mathrm{A}_{52}, \mathrm{~A}_{51}\right\}$
35	$\left\{\mathrm{A}_{34}, \mathrm{~A}_{35}\right\}$	71	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{45}\right\}$	107	$\left\{\mathrm{A}_{67}, \mathrm{~A}_{74}\right\}$	143	$\left\{\mathrm{A}_{72}, \mathrm{~A}_{75}\right\}$	179	$\left\{\mathrm{A}_{51}, \mathrm{~A}_{53}\right\}$
36	$\left\{\mathrm{A}_{35}, \mathrm{~A}_{66}\right\}$	72	$\left\{\mathrm{A}_{45}, \mathrm{~A}_{26}\right\}$	108	$\left\{\mathrm{A}_{74}, \mathrm{~A}_{68}\right\}$	144	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{77}\right\}$		

After obtaining a series for a FSG free of frequencies, the $I f$-then rules for these sets have evaluated and Applied. The PSO function algorithm based on w_{i} weights is for computing the value of defuzzification coefficients X_{i}. Table 6 explains the process of evaluating if-then rules and the specific results of weight w_{i}.

Table 6. Evaluation of $I f$-then rule with weights w_{i} results of TDS data using PSO function

\#	Matching Measure If - then	Resultant Weights	\#	Matching Measure If - then	Resultant Weights
1	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{17} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{32}$	$\begin{gathered} \mathrm{w}_{1}=0.734 \mathrm{and} \\ \mathrm{w}_{2}=0.1299 \end{gathered}$	91	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{28}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{33}$	$\mathrm{w}_{1}=0.7497$ and $\mathrm{w}_{2}=0.4466$
2	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{2} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{17}$	$\begin{gathered} \mathrm{w}_{1}=0.5321 \mathrm{and} \\ \mathrm{w}_{2}=0.4711 \\ \hline \end{gathered}$	92	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{56} \mathrm{~A} \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{28}$	$\mathrm{w}_{1}=0.7803$ and $\mathrm{w}_{2}=0.2182$
3	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{9}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{2}$	$\begin{gathered} \mathrm{w}_{1}=0.7126 \mathrm{and} \\ \mathrm{w}_{2}=0.3207 \\ \hline \end{gathered}$	93	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{50} \mathrm{~A}^{\mathrm{F}}(\mathrm{t}-2)=\mathrm{A}_{56}$	$\mathrm{w}_{1}=0.6962$ and $\mathrm{w}_{2}=0.3785$
4	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{10} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{9}$	$\begin{gathered} \mathrm{w}_{1}=0.6526 \mathrm{and} \\ \mathrm{w}_{2}=0.2654 \end{gathered}$	94	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{64}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{50}$	$\mathrm{w}_{1}=0.67$ and $\mathrm{w}_{2}=0.4922$
5	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{1} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{10}$	$\begin{gathered} \mathrm{w}_{1}=0.773 \mathrm{and} \\ \mathrm{w}_{2}=0.2332 \\ \hline \end{gathered}$	95	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{84}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{64}$	$\mathrm{w}_{1}=0.5981$ and $\mathrm{w}_{2}=0.4483$
6	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{4}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{1}$	$\begin{gathered} \mathrm{w}_{1}=0.6879 \mathrm{and} \\ \mathrm{w}_{2}=0.3311 \end{gathered}$	96	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{83} \mathrm{~A} \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{84}$	$\mathrm{w}_{1}=0.7505$ and $\mathrm{w}_{2}=0.1002$
7	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{4}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{4}$	$\begin{gathered} \mathrm{w}_{1}=0.8904 \mathrm{and} \\ \mathrm{w}_{2}=0.1362 \end{gathered}$	97	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{56} \mathrm{~A} \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{83}$	$\mathrm{w}_{1}=0.7379$ and $\mathrm{w}_{2}=0.2166$
8	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{8} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{4}$	$\begin{gathered} \mathrm{w}_{1}=0.7593 \text { and } \\ \mathrm{w}_{2}=0.5092 \\ \hline \end{gathered}$	98	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{54}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{56}$	$\mathrm{w}_{1}=0.5612$ and $\mathrm{w}_{2}=0.3792$
9	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{36} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{8}$	$\begin{gathered} \mathrm{w}_{1}=0.6553 \mathrm{and} \\ \mathrm{w}_{2}=0.4901 \end{gathered}$	99	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{45}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{54}$	$\mathrm{w}_{1}=0.6782$ and $\mathrm{w}_{2}=0.2161$
10	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{42}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{36}$	$\begin{gathered} \mathrm{w}_{1}=0.7927 \mathrm{and} \\ \mathrm{w}_{2}=0.1951 \\ \hline \end{gathered}$	100	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{32}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{45}$	$\mathrm{w}_{1}=0.5584 \mathrm{and} \mathrm{w}_{2}=0.4901$
11	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{39}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{42}$	$\begin{gathered} \mathrm{w}_{1}=0.7452 \mathrm{and} \\ \mathrm{w}_{2}=0.3811 \end{gathered}$	101	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{45}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{32}$	$\mathrm{w}_{1}=0.6944 \mathrm{and} \mathrm{w}_{2}=0.5433$
12	$\begin{gathered} \mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{58} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{39} \wedge \mathrm{~F}(\mathrm{t}- \\ 3)=\mathrm{A}_{42} \end{gathered}$	$\begin{gathered} \mathrm{w}_{1}=0.6867 \text { and } \\ \mathrm{w}_{2}=0.1625 \text { and } \\ \mathrm{w}_{3}=0.25 \end{gathered}$	102	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{45}$	$\mathrm{w}_{1}=0.5438$ and $\mathrm{w}_{2}=0.3528$
13	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{66} \mathrm{~A}^{\mathrm{F}}(\mathrm{t}-2)=\mathrm{A}_{58}$	$\begin{gathered} \mathrm{w}_{1}=0.7326 \mathrm{and} \\ \mathrm{w}_{2}=0.2098 \\ \hline \end{gathered}$	103	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{44}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.7311$ and $\mathrm{w}_{2}=0.2902$
14	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{55}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{66}$	$\begin{gathered} \mathrm{w}_{1}=0.7506 \mathrm{and} \\ \mathrm{w}_{2}=0.1542 \\ \hline \end{gathered}$	104	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{77}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{44}$	$\mathrm{w}_{1}=0.7017$ and $\mathrm{w}_{2}=0.2635$
15	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{42}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{55}$	$\begin{gathered} \mathrm{w}_{1}=0.5805 \mathrm{and} \\ \mathrm{w}_{2}=0.4081 \end{gathered}$	105	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{70}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{77}$	$\mathrm{w}_{1}=0.7708 \mathrm{and} \mathrm{w}_{2}=0.2053$
16	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{46} \mathrm{~A} \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{42}$	$\begin{gathered} \mathrm{w}_{1}=0.7362 \mathrm{and} \\ \mathrm{w}_{2}=0.1014 \\ \hline \end{gathered}$	106	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{67}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{70}$	$\mathrm{w}_{1}=0.6275$ and $\mathrm{w}_{2}=0.4063$
17	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{21}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{46}$	$\begin{gathered} \mathrm{w}_{1}=0.7927 \mathrm{and} \\ \mathrm{w}_{2}=0.1951 \end{gathered}$	107	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{74}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{67}$	$\mathrm{w}_{1}=0.75$ and $\mathrm{w}_{2}=0.2276$
18	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{24}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{21}$	$\begin{gathered} \mathrm{w}_{1}=0.7505 \mathrm{and} \\ \mathrm{w}_{2}=0.3677 \\ \hline \end{gathered}$	108	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{68} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{74}$	$\mathrm{w}_{1}=0.7497$ and $\mathrm{w}_{2}=0.219$
19	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{38} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{24}$	$\begin{gathered} \mathrm{w}_{1}=0.7386 \mathrm{and} \\ \mathrm{w}_{2}=0.2994 \\ \hline \end{gathered}$	109	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{64}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{68}$	$\mathrm{w}_{1}=0.7536$ and $\mathrm{w}_{2}=0.05$
20	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{39} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{38}$	$\begin{gathered} \mathrm{w}_{1}=0.6183 \mathrm{and} \\ \mathrm{w}_{2}=0.521 \end{gathered}$	110	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{31} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{64}$	$\mathrm{w}_{1}=0.7694$ and $\mathrm{w}_{2}=0.2615$

PEN Vol. 8, No. 2, June 2020, pp.828-848

21	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{58} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{39} \wedge \mathrm{~F}(\mathrm{t}-3)=\mathrm{A}_{38}$	$\begin{gathered} \mathrm{w}_{1}=0.7491 \mathrm{and} \\ \mathrm{w}_{2}=0.1697 \text { and } \\ \mathrm{w}_{3}=0.1568 \\ \hline \end{gathered}$	111	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{44}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{31}$	$\mathrm{w}_{1}=0.6855$ and $\mathrm{w}_{2}=0.4091$
22	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{58}$	$\begin{gathered} \mathrm{w}_{1}=0.7282 \text { and } \\ \mathrm{w}_{2}=0.2288 \\ \hline \end{gathered}$	112	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{53}{ }^{\text {F }} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{44}$	$\mathrm{w}_{1}=0.5218$ and $\mathrm{w}_{2}=0.501$
23	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{56}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\begin{gathered} \mathrm{w}_{1}=0.6179 \mathrm{and} \\ \mathrm{w}_{2}=0.5041 \end{gathered}$	113	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{52} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{53}$	$\mathrm{w}_{1}=0.5081$ and $\mathrm{w}_{2}=0.4152$
24	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{80} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{56}$	$\begin{gathered} \mathrm{w}_{1}=0.7423 \mathrm{and} \\ \mathrm{w}_{2}=0.2315 \end{gathered}$	114	$\begin{gathered} \mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{40} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{52} \wedge \mathrm{~F}(\mathrm{t}- \\ 3)=\mathrm{A}_{53} \end{gathered}$	$\begin{gathered} \mathrm{w}_{1}=0.75 \text { and } \mathrm{w}_{2}=0.156 \text { and } \\ \mathrm{w}_{3}=0.1987 \end{gathered}$
25	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{70} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{80}$	$\begin{gathered} \mathrm{w}_{1}=0.7085 \mathrm{and} \\ \mathrm{w}_{2}=0.098 \\ \hline \end{gathered}$	115	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{60}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{40}$	$\mathrm{w}_{1}=0.6017$ and $\mathrm{w}_{2}=0.4628$
26	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{37} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{70}$	$\begin{gathered} \mathrm{w}_{1}=0.5527 \mathrm{and} \\ \mathrm{w}_{2}=0.4007 \end{gathered}$	116	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{61} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{60}$	$\mathrm{w}_{1}=0.7465$ and $\mathrm{w}_{2}=0.3255$
27	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{43}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{37}$	$\begin{gathered} \mathrm{w}_{1}=0.4826 \mathrm{and} \\ \mathrm{w}_{2}=0.4416 \\ \hline \end{gathered}$	117	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{61}$	$\mathrm{w}_{1}=0.75$ and $\mathrm{w}_{2}=0.3373$
28	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{29}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{43}$	$\begin{gathered} \mathrm{w}_{1}=0.7592 \mathrm{and} \\ \mathrm{w}_{2}=0.068 \\ \hline \end{gathered}$	118	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{84}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.5207$ and $\mathrm{w}_{2}=0.4981$
29	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{7} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{29}$	$\begin{gathered} \mathrm{w}_{1}=0.7446 \mathrm{and} \\ \mathrm{w}_{2}=0.3489 \end{gathered}$	119	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{82}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{84}$	$\mathrm{w}_{1}=0.6672$ and $\mathrm{w}_{2}=0.343$
30	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{25} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{7}$	$\begin{gathered} \mathrm{w}_{1}=0.728 \mathrm{and} \\ \mathrm{w}_{2}=0.4657 \end{gathered}$	120	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{85}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{82}$	$\mathrm{w}_{1}=0.7593$ and $\mathrm{w}_{2}=0.1791$
31	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{42}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{25}$	$\begin{gathered} \mathrm{w}_{1}=0.7415 \mathrm{and} \\ \mathrm{w}_{2}=0.4977 \\ \hline \end{gathered}$	121	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{85}$	$\mathrm{w}_{1}=0.6296$ and $\mathrm{w}_{2}=0.2092$
32	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{69}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{42}$	$\begin{gathered} \mathrm{w}_{1}=0.6831 \mathrm{and} \\ \mathrm{w}_{2}=0.4292 \end{gathered}$	122	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{47}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.6077$ and $\mathrm{w}_{2}=0.2972$
33	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{77}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{69}$	$\begin{gathered} \mathrm{w}_{1}=0.5474 \mathrm{and} \\ \mathrm{w}_{2}=0.225 \\ \hline \end{gathered}$	123	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{40} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{47}$	$\mathrm{w}_{1}=0.724 \mathrm{and} \mathrm{w}_{2}=0.2818$
34	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{34}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{77}$	$\begin{gathered} \mathrm{w}_{1}=0.6644 \mathrm{and} \\ \mathrm{w}_{2}=0.2625 \end{gathered}$	124	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{43}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{40}$	$\mathrm{w}_{1}=0.5574$ and $\mathrm{w}_{2}=0.4486$
35	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{35}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{34}$	$\begin{gathered} \mathrm{w}_{1}=0.7316 \mathrm{and} \\ \mathrm{w}_{2}=0.4958 \\ \hline \end{gathered}$	125	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{41}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{43}$	$\mathrm{w}_{1}=0.5481$ and $\mathrm{w}_{2}=0.5$
36	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{66}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{35}$	$\begin{gathered} \mathrm{w}_{1}=0.613 \mathrm{and} \\ \mathrm{w}_{2}=0.3715 \end{gathered}$	126	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{50} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{41}$	$\mathrm{w}_{1}=0.7991$ and $\mathrm{w}_{2}=0.1969$
37	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{52}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{66}$	$\begin{gathered} \mathrm{w}_{1}=0.5084 \mathrm{and} \\ \mathrm{w}_{2}=0.3776 \end{gathered}$	127	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{48}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{50}$	$\mathrm{w}_{1}=0.5304 \mathrm{and} \mathrm{w}_{2}=0.5038$
38	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{40} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{52} \wedge \mathrm{~F}(\mathrm{t}-3)=\mathrm{A}_{66}$	$\begin{gathered} \mathrm{w}_{1}=0.3487 \text { and } \\ \mathrm{w}_{2}=0.2821 \text { and } \\ \mathrm{w}_{3}=0.2895 \\ \hline \end{gathered}$	128	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{54}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{48}$	$\mathrm{w}_{1}=0.7432$ and $\mathrm{w}_{2}=0.3925$
39	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{38}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{40}$	$\begin{gathered} \mathrm{w}_{1}=0.6396 \mathrm{and} \\ \mathrm{w}_{2}=0.2882 \\ \hline \end{gathered}$	129	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{54}$	$\mathrm{w}_{1}=0.7681$ and $\mathrm{w}_{2}=0.2341$
40	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{28}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{38}$	$\begin{gathered} \mathrm{w}_{1}=0.5925 \mathrm{and} \\ \mathrm{w}_{2}=0.3352 \end{gathered}$	130	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{69}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.6691$ and $\mathrm{w}_{2}=0.3086$
41	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{22}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{28}$	$\begin{gathered} \mathrm{w}_{1}=0.7039 \mathrm{and} \\ \mathrm{w}_{2}=0.435 \\ \hline \end{gathered}$	131	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{66} \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{69}$	$\mathrm{w}_{1}=0.7491$ and $\mathrm{w}_{2}=0.2739$
42	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{42}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{22}$	$\begin{gathered} \mathrm{w}_{1}=0.6183 \mathrm{and} \\ \mathrm{w}_{2}=0.4986 \end{gathered}$	132	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{71} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{66}$	$\mathrm{w}_{1}=0.5847$ and $\mathrm{w}_{2}=0.4135$
43	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{49}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{42}$	$\begin{gathered} \mathrm{w}_{1}=0.7037 \mathrm{and} \\ \mathrm{w}_{2}=0.3772 \end{gathered}$	133	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{69} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{71}$	$\mathrm{w}_{1}=0.7201$ and $\mathrm{w}_{2}=0.2319$
44	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{58}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{49}$	$\begin{gathered} \mathrm{w}_{1}=0.5342 \mathrm{and} \\ \mathrm{w}_{2}=0.4988 \\ \hline \end{gathered}$	134	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{61} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{69}$	$\mathrm{w}_{1}=0.748 \mathrm{and} \mathrm{w}_{2}=0.1806$
45	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{59}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{58}$	$\begin{gathered} \mathrm{w}_{1}=0.7814 \mathrm{and} \\ \mathrm{w}_{2}=0.5298 \end{gathered}$	135	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{51}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{61}$	$\mathrm{w}_{1}=0.5276$ and $\mathrm{w}_{2}=0.4863$
46	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{110} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{59}$	$\begin{gathered} \mathrm{w}_{1}=0.6211 \mathrm{and} \\ \mathrm{w}_{2}=0.4642 \end{gathered}$	136	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{58} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{51}$	$\mathrm{w}_{1}=0.8162$ and $\mathrm{w}_{2}=0.1344$
47	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{104} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{110}$	$\begin{gathered} \mathrm{w}_{1}=0.653 \mathrm{and} \\ \mathrm{w}_{2}=0.3165 \\ \hline \end{gathered}$	137	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{49}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{58}$	$\mathrm{w}_{1}=0.439 \mathrm{and} \mathrm{w}_{2}=0.5$
48	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{100} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{104}$	$\begin{gathered} \mathrm{w}_{1}=0.6951 \mathrm{and} \\ \mathrm{w}_{2}=0.2109 \end{gathered}$	138	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{44}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{49}$	$\mathrm{w}_{1}=0.7134$ and $\mathrm{w}_{2}=0.3151$
49	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{83}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{100}$	$\begin{gathered} \mathrm{w}_{1}=0.8146 \mathrm{and} \\ \mathrm{w}_{2}=0.0573 \\ \hline \end{gathered}$	139	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{50}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{44}$	$\mathrm{w}_{1}=0.7482$ and $\mathrm{w}_{2}=0.4013$
50	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{60}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{83}$	$\begin{gathered} \mathrm{w}_{1}=0.5655 \mathrm{and} \\ \mathrm{w}_{2}=0.2749 \end{gathered}$	140	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{70}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{50}$	$\mathrm{w}_{1}=0.7351$ and $\mathrm{w}_{2}=0.2708$
51	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{40}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{60}$	$\begin{gathered} \mathrm{w}_{1}=0.7362 \mathrm{and} \\ \mathrm{w}_{2}=0.503 \\ \hline \end{gathered}$	141	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{66} \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{70}$	$\mathrm{w}_{1}=0.6791$ and $\mathrm{w}_{2}=0.3484$
52	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{84}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{40}$	$\begin{gathered} \mathrm{w}_{1}=0.7017 \mathrm{and} \\ \mathrm{w}_{2}=0.4974 \\ \hline \end{gathered}$	142	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{72}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{66}$	$\mathrm{w}_{1}=0.6969$ and $\mathrm{w}_{2}=0.3311$
53	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{100} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{84}$	$\begin{gathered} \mathrm{w}_{1}=0.722 \mathrm{and} \\ \mathrm{w}_{2}=0.3317 \end{gathered}$	143	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{72}$	$\mathrm{w}_{1}=0.5408$ and $\mathrm{w}_{2}=0.4781$
54	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{105} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{100}$	$\begin{gathered} \mathrm{w}_{1}=0.5277 \text { and } \\ \mathrm{w}_{2}=0.4992 \\ \hline \end{gathered}$	144	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{77}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.8878$ and $\mathrm{w}_{2}=0.1262$
55	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{108} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{105}$	$\begin{gathered} \mathrm{w}_{1}=0.5987 \mathrm{and} \\ \mathrm{w}_{2}=0.4511 \\ \hline \end{gathered}$	145	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{79} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{77}$	$\mathrm{w}_{1}=0.5669$ and $\mathrm{w}_{2}=0.4104$

56	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{117} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{108}$	$\begin{gathered} \mathrm{w}_{1}=0.7615 \mathrm{and} \\ \mathrm{w}_{2}=0.2801 \\ \hline \end{gathered}$	146	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{74} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{79}$	$\mathrm{w}_{1}=0.7468$ and $\mathrm{w}_{2}=0.199$
57	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{124}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{117}$	$\begin{gathered} \mathrm{w}_{1}=0.5502 \mathrm{and} \\ \mathrm{w}_{2}=0.4187 \\ \hline \end{gathered}$	147	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{74}$	$\mathrm{w}_{1}=0.6026$ and $\mathrm{w}_{2}=0.3335$
58	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{114}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{124}$	$\begin{gathered} \mathrm{w}_{1}=0.6178 \mathrm{and} \\ \mathrm{w}_{2}=0.3712 \end{gathered}$	148	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{58} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\mathrm{w}_{1}=0.4959$ and $\mathrm{w}_{2}=0.4313$
59	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{115} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{114}$	$\begin{gathered} \mathrm{w}_{1}=0.7718 \mathrm{and} \\ \mathrm{w}_{2}=0.2152 \end{gathered}$	149	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{49} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{58}$	$\mathrm{w}_{1}=0.7544$ and $\mathrm{w}_{2}=0.2732$
60	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{12}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{115}$	$\begin{gathered} \mathrm{w}_{1}=0.5934 \mathrm{and} \\ \mathrm{w}_{2}=0.4542 \\ \hline \end{gathered}$	150	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{56} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{49}$	$\mathrm{w}_{1}=0.7528$ and $\mathrm{w}_{2}=0.2798$
61	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{124}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{112}$	$\begin{gathered} \mathrm{w}_{1}=0.5126 \mathrm{and} \\ \mathrm{w}_{2}=0.2334 \end{gathered}$	151	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{59} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{56}$	$\mathrm{w}_{1}=0.7469$ and $\mathrm{w}_{2}=0.2868$
62	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{63} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{124}$	$\begin{gathered} \mathrm{w}_{1}=0.8095 \mathrm{and} \\ \mathrm{w}_{2}=0.0246 \\ \hline \end{gathered}$	152	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{64} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{59}$	$\mathrm{w}_{1}=0.5305$ and $\mathrm{w}_{2}=0.5004$
63	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{37} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{63}$	$\begin{gathered} \mathrm{w}_{1}=0.5201 \mathrm{and} \\ \mathrm{w}_{2}=0.3248 \end{gathered}$	153	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{67} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{64}$	$\mathrm{w}_{1}=0.7415$ and $\mathrm{w}_{2}=0.3142$
64	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{24}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{37}$	$\mathrm{w}_{1}=0.94 \mathrm{and}^{2}=0.0227$	154	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{67}$	$\mathrm{w}_{1}=0.4368$ and $\mathrm{w}_{2}=0.5715$
65	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{19}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{24}$	$\begin{gathered} \mathrm{w}_{1}=0.7613 \mathrm{and} \\ \mathrm{w}_{2}=0.4193 \end{gathered}$	155	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{72} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.6571$ and $\mathrm{w}_{2}=0.3123$
66	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{43}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{19}$	$\begin{gathered} \mathrm{w}_{1}=0.5703 \mathrm{and} \\ \mathrm{w}_{2}=0.497 \\ \hline \end{gathered}$	156	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{68} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{72}$	$\mathrm{w}_{1}=0.3866$ and $\mathrm{w}_{2}=0.6246$
67	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{41}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{43}$	$\begin{gathered} \mathrm{w}_{1}=0.7731 \mathrm{and} \\ \mathrm{w}_{2}=0.1451 \end{gathered}$	157	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{72} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{68}$	$\mathrm{w}_{1}=0.6505$ and $\mathrm{w}_{2}=0.2767$
68	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{30}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{41}$	$\begin{gathered} \mathrm{w}_{1}=0.5769 \mathrm{and} \\ \mathrm{w}_{2}=0.455 \\ \hline \end{gathered}$	158	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{58} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{72}$	$\mathrm{w}_{1}=0.7454$ and $\mathrm{w}_{2}=0.2555$
69	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{39}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{30}$	$\begin{gathered} \mathrm{w}_{1}=0.6175 \mathrm{and} \\ \mathrm{w}_{2}=0.4501 \end{gathered}$	159	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{62} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{58}$	$\mathrm{w}_{1}=0.4072$ and $\mathrm{w}_{2}=0.6457$
70	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{44} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{39}$	$\begin{gathered} \mathrm{w}_{1}=0.572 \mathrm{and} \\ \mathrm{w}_{2}=0.4556 \end{gathered}$	160	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{68} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{62}$	$\mathrm{w}_{1}=0.5326$ and $\mathrm{w}_{2}=0.3795$
71	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{45}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{44}$	$\begin{gathered} \mathrm{w}_{1}=0.7394 \mathrm{and} \\ \mathrm{w}_{2}=0.1382 \\ \hline \end{gathered}$	161	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{51} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{68}$	$\mathrm{w}_{1}=0.7501$ and $\mathrm{w}_{2}=0.241$
72	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{26}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{45}$	$\begin{gathered} \mathrm{w}_{1}=0.5381 \mathrm{and} \\ \mathrm{w}_{2}=0.4195 \\ \hline \end{gathered}$	162	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{54} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{51}$	$\mathrm{w}_{1}=0.7499$ and $\mathrm{w}_{2}=0.2918$
73	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{29}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{26}$	$\begin{gathered} \mathrm{w}_{1}=0.5661 \mathrm{and} \\ \mathrm{w}_{2}=0.3769 \end{gathered}$	163	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{59} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{54}$	$\mathrm{w}_{1}=0.5706$ and $\mathrm{w}_{2}=0.4792$
74	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{20}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{29}$	$\begin{gathered} \mathrm{w}_{1}=0.6083 \mathrm{and} \\ \mathrm{w}_{2}=0.4925 \end{gathered}$	164	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{59}$	$\mathrm{w}_{1}=0.6608$ and $\mathrm{w}_{2}=0.3818$
75	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{37} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{20}$	$\begin{gathered} \mathrm{w}_{1}=0.7506 \mathrm{and} \\ \mathrm{w}_{2}=0.2416 \end{gathered}$	165	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{70} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\mathrm{w}_{1}=0.8178 \mathrm{nd} \mathrm{w}_{2}=0.2086$
76	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{32}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{37}$	$\begin{gathered} \mathrm{w}_{1}=0.4859 \mathrm{and} \\ \mathrm{w}_{2}=0.4036 \end{gathered}$	166	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{70}$	$\mathrm{w}_{1}=0.5414$ and $\mathrm{w}_{2}=0.4692$
77	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{19}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{32}$	$\begin{gathered} \mathrm{w}_{1}=0.587 \mathrm{and} \\ \mathrm{w}_{2}=0.4051 \end{gathered}$	167	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{74} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.7095$ and $\mathrm{w}_{2}=0.2744$
78	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{23}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{19}$	$\begin{gathered} \mathrm{w}_{1}=0.522 \mathrm{and} \\ \mathrm{w}_{2}=0.4958 \end{gathered}$	168	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{71} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{74}$	$\mathrm{w}_{1}=0.6151$ and $\mathrm{w}_{2}=0.3478$
79	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{24}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{23}$	$\begin{gathered} \mathrm{w}_{1}=0.6045 \mathrm{and} \\ \mathrm{w}_{2}=0.4688 \end{gathered}$	169	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{71}$	$\mathrm{w}_{1}=0.6756$ and $\mathrm{w}_{2}=0.2981$
80	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{33}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{24}$	$\begin{gathered} \mathrm{w}_{1}=0.5769 \mathrm{and} \\ \mathrm{w}_{2}=0.5116 \\ \hline \end{gathered}$	170	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{62} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\mathrm{w}_{1}=0.4562$ and $\mathrm{w}_{2}=0.5447$
81	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{40} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{33}$	$\begin{gathered} \mathrm{w}_{1}=0.6915 \mathrm{and} \\ \mathrm{w}_{2}=0.4164 \\ \hline \end{gathered}$	171	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{64} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{62}$	$\mathrm{w}_{1}=0.5273$ and $\mathrm{w}_{2}=0.5$
82	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{53}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{40}$	$\mathrm{w}_{1}=0.8753$ and $\mathrm{w}_{2}=0.5$	172	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{68} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{64}$	$\mathrm{w}_{1}=0.7434$ and $\mathrm{w}_{2}=0.2367$
83	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{106} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{53}$	$\begin{gathered} \mathrm{w}_{1}=0.6826 \mathrm{and} \\ \mathrm{w}_{2}=0.5034 \end{gathered}$	173	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{63} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{68}$	$\mathrm{w}_{1}=0.6416$ and $\mathrm{w}_{2}=0.3957$
84	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{119}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{106}$	$\begin{gathered} \mathrm{w}_{1}=0.7737 \mathrm{and} \\ \mathrm{w}_{2}=0.0591 \end{gathered}$	174	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{71} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{63}$	$\mathrm{w}_{1}=0.6405$ and $\mathrm{w}_{2}=0.2914$
85	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{81} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{119}$	$\begin{gathered} \mathrm{w}_{1}=0.6953 \mathrm{and} \\ \mathrm{w}_{2}=0.1292 \\ \hline \end{gathered}$	175	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{57} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{71}$	$\mathrm{w}_{1}=0.7939$ and $\mathrm{w}_{2}=0.1728$
86	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{54}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{81}$	$\mathrm{w}_{1}=0.75{\text { and } \mathrm{w}_{2}=0.136}$	176	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{54} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{57}$	$\mathrm{w}_{1}=0.7108$ and $\mathrm{w}_{2}=0.2695$
87	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{39}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{54}$	$\begin{gathered} \mathrm{w}_{1}=0.6137 \mathrm{and} \\ \mathrm{w}_{2}=0.3156 \end{gathered}$	177	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{52} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{54}$	$\mathrm{w}_{1}=0.545$ and $\mathrm{w}_{2}=0.4428$
88	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{34}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{39}$	$\begin{gathered} \mathrm{w}_{1}=0.7543 \mathrm{and} \\ \mathrm{w}_{2}=0.1623 \end{gathered}$	178	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{51} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{52}$	$\mathrm{w}_{1}=0.5061$ and $\mathrm{w}_{2}=0.5$
89	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{23}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{34}$	$\mathrm{w}_{1}=0.536$ and $\mathrm{w}_{2}=0.5$			
90	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{33}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{23}$	$\begin{gathered} \mathrm{w}_{1}=0.7522 \mathrm{and} \\ \mathrm{w}_{2}=0.2271 \end{gathered}$			

Table 6 shows that each fuzzy rule has corresponding weight w_{i} values resulting from the application of the PSO function. To illustrate, we have the fuzzy rule (1) in Table 6 . Accordingly, weights are equal to $\left(\mathrm{w}_{1}=\right.$ $0.734, \mathrm{w}_{2}=0.1299$). The value of the linguistic variable in time $\mathrm{F}(\mathrm{t}-1)$ is equal to A17 and the value of the linguistic variable in time $\mathrm{F}(\mathrm{t}-2)$ equals to A_{32}. Because this rule contains only two conditions, the number of
weights corresponding to this rule is only two. However, if the fuzzy rule contains three conditions, as in fuzzy rule 12 in the table, the number of corresponding weights will be three weights.
Throughout the values of the weights that have been obtained by using the PSO function, the formula of the defuzzification coefficient X_{i} has been applied and used in the defuzzing process to obtain the predictive values time series as shown in Table 7.

Table 7. Predictive values of the TDS series after defuzzification

It is noted in Table 7 that the predictive values of time series data are close to actual values when using the high order fuzzy time series model and symbolized Fuzzypos

3.3. The proposed procedure in this study

Time series data for the $\operatorname{ARIMA}(3,1,3)$ model were taken as a new series as shown in Figure 7.

Figure 7. Time series data for the ARIMA model
The high order fuzzy time series model was combined to control the fluctuations of ARIMA series errors and to find a model with high accuracy and quality, by calculating the following: $\mathrm{AD}=2.1709$ and $\mathrm{ADR}=1.2867$, $\mathrm{U}=$ [372.1043, 761.0917]. The number of fuzzy sets is equal to $\mathrm{n}=151$. It's being able to define the fuzzy sets for new series (ARIMA) with 151 fuzzy sets. It can be defined by using TMF as shown in Table 8, which can be identified by using the TMF.

Table 8. Fuzzy sets of high order fuzzy model for ARIMA series

Fuzzy Sets	Fuzzy Numbers				Fuzzy Sets	Fuzzy Numbers			
A_{1}	372.1043	373.391	374.6777	375.9644	A_{77}	567.6827	568.9694	570.2561	571.5428
A_{2}	374.6777	375.9644	377.2511	378.5378	A_{78}	570.2561	571.5428	572.8295	574.1162
A_{3}	377.2511	378.5378	379.8245	381.1112	A_{79}	572.8295	574.1162	575.4029	576.6896
A_{4}	379.8245	381.1112	382.3979	383.6846	A_{80}	575.4029	576.6896	577.9763	579.263
A_{5}	382.3979	383.6846	384.9713	386.258	A_{81}	577.9763	579.263	580.5497	581.8364
A_{6}	384.9713	386.258	387.5447	388.8314	A_{82}	580.5497	581.8364	583.1231	584.4098
A_{7}	387.5447	388.8314	390.1181	391.4048	A_{83}	583.1231	584.4098	585.6965	586.9832
A_{8}	390.1181	391.4048	392.6915	393.9782	A_{84}	585.6965	586.9832	588.2699	589.5566
A_{9}	392.6915	393.9782	395.2649	396.5516	A_{85}	588.2699	589.5566	590.8433	592.13
A_{10}	395.2649	396.5516	397.8383	399.125	A_{86}	590.8433	592.13	593.4167	594.7034
A_{11}	397.8383	399.125	400.4117	401.6984	A_{87}	593.4167	594.7034	595.9901	597.2768
A_{12}	400.4117	401.6984	402.9851	404.2718	A_{88}	595.9901	597.2768	598.5635	599.8502
A_{13}	402.9851	404.2718	405.5585	406.8452	A_{89}	598.5635	599.8502	601.1369	602.4236
A_{14}	405.5585	406.8452	408.1319	409.4186	A_{90}	601.1369	602.4236	603.7103	604.997
A_{15}	408.1319	409.4186	410.7053	411.992	A_{91}	603.7103	604.997	606.2837	607.5704
A_{16}	410.7053	411.992	413.2787	414.5654	A_{92}	606.2837	607.5704	608.8571	610.1438
A_{17}	413.2787	414.5654	415.8521	417.1388	A_{93}	608.8571	610.1438	611.4305	612.7172
A_{18}	415.8521	417.1388	418.4255	419.7122	A_{94}	611.4305	612.7172	614.0039	615.2906
A_{19}	418.4255	419.7122	420.9989	422.2856	A_{95}	614.0039	615.2906	616.5773	617.864
A_{20}	420.9989	422.2856	423.5723	424.859	A_{96}	616.5773	617.864	619.1507	620.4374
A_{21}	423.5723	424.859	426.1457	427.4324	A_{97}	619.1507	620.4374	621.7241	623.0108
A_{22}	426.1457	427.4324	428.7191	430.0058	A_{98}	621.7241	623.0108	624.2975	625.5842
A_{23}	428.7191	430.0058	431.2925	432.5792	A_{99}	624.2975	625.5842	626.8709	628.1576
A_{24}	431.2925	432.5792	433.8659	435.1526	A_{100}	626.8709	628.1576	629.4443	630.731
A_{25}	433.8659	435.1526	436.4393	437.726	A_{101}	629.4443	630.731	632.0177	633.3044
A_{26}	436.4393	437.726	439.0127	440.2994	A_{102}	632.0177	633.3044	634.5911	635.8778
A_{27}	439.0127	440.2994	441.5861	442.8728	A_{103}	634.5911	635.8778	637.1645	638.4512
A_{28}	441.5861	442.8728	444.1595	445.4462	A_{104}	637.1645	638.4512	639.7379	641.0246
A_{29}	444.1595	445.4462	446.7329	448.0196	A_{105}	639.7379	641.0246	642.3113	643.598
A_{30}	446.7329	448.0196	449.3063	450.593	A_{106}	642.3113	643.598	644.8847	646.1714
A_{31}	449.3063	450.593	451.8797	453.1664	A_{107}	644.8847	646.1714	647.4581	648.7448
A_{32}	451.8797	453.1664	454.4531	455.7398	A_{108}	647.4581	648.7448	650.0315	651.3182
A_{33}	454.4531	455.7398	457.0265	458.3132	A_{109}	650.0315	651.3182	652.6049	653.8916
A_{34}	457.0265	458.3132	459.5999	460.8866	A_{110}	652.6049	653.8916	655.1783	656.465
A_{35}	459.5999	460.8866	462.1733	463.46	A_{111}	655.1783	656.465	657.7517	659.0384
A_{36}	462.1733	463.46	464.7467	466.0334	A_{112}	657.7517	659.0384	660.3251	661.6118
A_{37}	464.7467	466.0334	467.3201	468.6068	A_{113}	660.3251	661.6118	662.8985	664.1852
A_{38}	467.3201	468.6068	469.8935	471.1802	A_{114}	662.8985	664.1852	665.4719	666.7586
A_{39}	469.8935	471.1802	472.4669	473.7536	A_{115}	665.4719	666.7586	668.0453	669.332
A_{40}	472.4669	473.7536	475.0403	476.327	A_{116}	668.0453	669.332	670.6187	671.9054
A_{41}	475.0403	476.327	477.6137	478.9004	A_{117}	670.6187	671.9054	673.1921	674.4788
A_{42}	477.6137	478.9004	480.1871	481.4738	A_{118}	673.1921	674.4788	675.7655	677.0522
A_{43}	480.1871	481.4738	482.7605	484.0472	A_{119}	675.7655	677.0522	678.3389	679.6256
A_{44}	482.7605	484.0472	485.3339	486.6206	A_{120}	678.3389	679.6256	680.9123	682.199
A_{45}	485.3339	486.6206	487.9073	489.194	A_{121}	680.9123	682.199	683.4857	684.7724
A_{46}	487.9073	489.194	490.4807	491.7674	A_{122}	683.4857	684.7724	686.0591	687.3458
A_{47}	490.4807	491.7674	493.0541	494.3408	A_{123}	686.0591	687.3458	688.6325	689.9192
A_{48}	493.0541	494.3408	495.6275	496.9142	A_{124}	688.6325	689.9192	691.2059	692.4926

A_{49}	495.6275	496.9142	498.2009	499.4876	A_{125}	691.2059	692.4926	693.7793	695.066
A_{50}	498.2009	499.4876	500.7743	502.061	A_{126}	693.7793	695.066	696.3527	697.6394
A_{51}	500.7743	502.061	503.3477	504.6344	A_{127}	696.3527	697.6394	698.9261	700.2128
A_{52}	503.3477	504.6344	505.9211	507.2078	A_{128}	698.9261	700.2128	701.4995	702.7862
A_{53}	505.9211	507.2078	508.4945	509.7812	A_{129}	701.4995	702.7862	704.0729	705.3596
A_{54}	508.4945	509.7812	511.0679	512.3546	A_{130}	704.0729	705.3596	706.6463	707.933
A_{55}	511.0679	512.3546	513.6413	514.928	A_{131}	706.6463	707.933	709.2197	710.5064
A_{56}	513.6413	514.928	516.2147	517.5014	A_{132}	709.2197	710.5064	711.7931	713.0798
A_{57}	516.2147	517.5014	518.7881	520.0748	A_{133}	711.7931	713.0798	714.3665	715.6532
A_{58}	518.7881	520.0748	521.3615	522.6482	A_{134}	714.3665	715.6532	716.9399	718.2266
A_{59}	521.3615	522.6482	523.9349	525.2216	A_{135}	716.9399	718.2266	719.5133	720.8
A_{60}	523.9349	525.2216	526.5083	527.795	A_{136}	719.5133	720.8	722.0867	723.3734
A_{61}	526.5083	527.795	529.0817	530.3684	A_{137}	722.0867	723.3734	724.6601	725.9468
A_{62}	529.0817	530.3684	531.6551	532.9418	A_{138}	724.6601	725.9468	727.2335	728.5202
A_{63}	531.6551	532.9418	534.2285	535.5152	A_{139}	727.2335	728.5202	729.8069	731.0936
A_{64}	534.2285	535.5152	536.8019	538.0886	A_{140}	729.8069	731.0936	732.3803	733.667
A_{65}	536.8019	538.0886	539.3753	540.662	A_{141}	732.3803	733.667	734.9537	736.2404
A_{66}	539.3753	540.662	541.9487	543.2354	A_{142}	734.9537	736.2404	737.5271	738.8138
A_{67}	541.9487	543.2354	544.5221	545.8088	A_{143}	737.5271	738.8138	740.1005	741.3872
A_{68}	544.5221	545.8088	547.0955	548.3822	A_{144}	740.1005	741.3872	742.6739	743.9606
A_{69}	547.0955	548.3822	549.6689	550.9556	A_{145}	742.6739	743.9606	745.2473	746.534
A_{70}	549.6689	550.9556	552.2423	553.529	A_{146}	745.2473	746.534	747.8207	749.1074
A_{71}	552.2423	553.529	554.8157	556.1024	A_{147}	747.8207	749.1074	750.3941	751.6808
A_{72}	554.8157	556.1024	557.3891	558.6758	A_{148}	750.3941	751.6808	752.9675	754.2542
A_{73}	557.3891	558.6758	559.9625	561.2492	A_{149}	752.9675	754.2542	755.5409	756.8276
A_{74}	559.9625	561.2492	562.5359	563.8226	A_{150}	755.5409	756.8276	758.1143	759.401
A_{75}	562.5359	563.8226	565.1093	566.396	A_{151}	758.1143	759.401	760.6877	761.9744
A_{76}	565.1093	566.396	567.6827	568.9694					

Time series data has fuzzified, and Table 9 shows fuzzification of the time series to determine the membership function.

Table 9. Fuzzification ARIMA data according to the high order fuzzy model

Linguistic Variable	Month	Year									
***	Jan	ষ্Nి	A_{115}	Jan	Ò	A_{108}	Jan	$\stackrel{\sim}{\sim}$	A_{94}	Jan	o
A_{39}	Feb		A_{125}	Feb		A_{96}	Feb		A_{98}	Feb	
A_{19}	Mar		A_{98}	Mar		A_{71}	Mar		A_{95}	Mar	
A_{3}	Apr		A_{66}	Apr		A_{72}	Apr		A_{95}	Apr	
A_{12}	May		A_{60}	May		A_{53}	May		A_{81}	May	
A_{10}	June		A_{102}	June		A_{46}	June		A_{73}	June	
A_{1}	July		A_{118}	July		A_{61}	July		A_{67}	July	
A_{5}	Aug		A_{130}	Aug		A_{90}	Aug		A_{70}	Aug	
A_{3}	Sep		A_{126}	Sep		A_{55}	Sep		A_{77}	Sep	
A_{10}	Oct		A_{143}	Oct		A_{101}	Oct		A_{81}	Oct	
A_{44}	Nov		A_{149}	Nov		A_{83}	Nov		A_{83}	Nov	
A_{46}	Dec		A_{132}	Dec		A_{82}	Dec		A97	Dec	
A_{48}	Jan	¿ి	A_{145}	Jan	oి	A_{99}	Jan	$\stackrel{\infty}{2}$	A_{87}	Jan	$\stackrel{\rightharpoonup}{\mathrm{N}}$
A_{70}	Feb		A_{132}	Feb		A_{76}	Feb		A_{86}	Feb	
A_{75}	Mar		A_{151}	Mar		A_{86}	Mar		A_{93}	Mar	
A_{66}	Apr		A_{75}	Apr		A_{40}	Apr		A_{69}	Apr	
A_{49}	May		A_{47}	May		A_{57}	May		A_{84}	May	
A_{56}	June		A_{41}	June		A_{76}	June		A_{86}	June	
A_{24}	July		A_{23}	July		A_{57}	July		A_{60}	July	
A_{32}	Aug		A_{65}	Aug		A_{59}	Aug		A_{78}	Aug	
A_{48}	Sep		A_{52}	Sep		A_{80}	Sep		A_{72}	Sep	
A_{44}	Oct		A_{36}	Oct		A_{69}	Oct		A_{82}	Oct	
A_{75}	Nov		A_{63}	Nov		A_{101}	Nov		A_{95}	Nov	
A_{75}	Dec		A_{49}	Dec		A_{100}	Dec		A_{84}	Dec	
A_{65}	Jan	৪o	A_{62}	Jan	$\stackrel{0}{i}$	A_{97}	Jan	$\underset{\sim}{ \pm}$	A_{98}	Jan	$\stackrel{\infty}{\underset{\sim}{e}}$
A_{104}	Feb		A_{40}	Feb		A_{114}	Feb		A_{88}	Feb	
A_{75}	Mar		A_{33}	Mar		A_{79}	Mar		A_{78}	Mar	
A_{45}	Apr		A_{38}	Apr		A_{64}	Apr		A_{88}	Apr	
A_{60}	May		A_{47}	May		A_{58}	May		A_{76}	May	
A_{26}	June		A_{42}	June		A_{48}	June		A_{88}	June	
A_{17}	July		A_{33}	July		A_{66}	July		A_{84}	July	
A_{36}	Aug		A_{30}	Aug		A_{61}	Aug		A_{85}	Aug	
A_{46}	Sep		A_{37}	Sep		A_{59}	Sep		A_{78}	Sep	
A_{93}	Oct		A_{46}	Oct		A_{78}	Oct		A_{68}	Oct	
A_{86}	Nov		A_{51}	Nov		A_{85}	Nov		A_{68}	Nov	
A_{36}	Dec		A_{73}	Dec		A_{89}	Dec		A_{71}	Dec	

A_{56}	Jan	$\stackrel{N}{\delta}$	A_{132}	Jan	극	A_{86}	Jan	$\stackrel{n}{c}$
A_{73}	Feb		A_{138}	Feb		A_{84}	Feb	
A_{63}	Mar		A_{96}	Mar		A_{91}	Mar	
A_{55}	Apr		A_{68}	Apr		A_{73}	Apr	
A_{41}	May		A_{50}	May		A_{65}	May	
A_{41}	June		A_{46}	June		A_{80}	June	
A_{29}	July		A_{33}	July		A_{56}	July	
A_{52}	Aug		A_{46}	Aug		A_{63}	Aug	
A_{65}	Sep		A_{39}	Sep		A_{67}	Sep	
A_{67}	Oct		A_{74}	Oct		A_{85}	Oct	
A_{75}	Nov		A_{62}	Nov		A_{88}	Nov	
A_{138}	Dec		A_{81}	Dec		A_{87}	Dec	

In the stage of defuzzification, FSGS elements have been established as in Table 10. It is clear that there are no frequencies in elements of FSGS.

Table 10. FSGS for the data of ARIMA series

\#	FSGS								
1	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{19}\right\}$	37	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{63}\right\}$	73	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{33}\right\}$	109	$\left\{\mathrm{A}_{76}, \mathrm{~A}_{86}\right\}$	145	\{ $\mathrm{A}_{98}, \mathrm{~A}_{95}$ \}
2	$\left\{\mathrm{A}_{19}, \mathrm{~A}_{3}\right\}$	38	$\left\{\mathrm{A}_{63}, \mathrm{~A}_{55}\right\}$	74	$\left\{\mathrm{A}_{33}, \mathrm{~A}_{38}\right\}$	110	$\left\{\mathrm{A}_{86}, \mathrm{~A}_{40}\right\}$	146	\{ $\mathrm{A}_{95}, \mathrm{~A}_{95}$ \}
3	$\left\{\mathrm{A}_{3}, \mathrm{~A}_{12}\right\}$	39	$\left\{\mathrm{A}_{55}, \mathrm{~A}_{41}\right\}$	75	$\left\{\mathrm{A}_{38}, \mathrm{~A}_{47}\right\}$	111	$\left\{\mathrm{A}_{40}, \mathrm{~A}_{57}\right\}$	147	$\left\{\mathrm{A}_{95}, \mathrm{~A}_{81}\right.$ \}
4	$\left\{\mathrm{A}_{12}, \mathrm{~A}_{10}\right\}$	40	$\left\{\mathrm{A}_{41}, \mathrm{~A}_{41}\right\}$	76	$\left\{\mathrm{A}_{47}, \mathrm{~A}_{42}\right\}$	112	$\left\{\mathrm{A}_{57}, \mathrm{~A}_{76}\right\}$	148	$\left\{\mathrm{A}_{81}, \mathrm{~A}_{73}\right\}$
5	$\left\{\mathrm{A}_{10}, \mathrm{~A}_{1}\right\}$	41	$\left\{\mathrm{A}_{41}, \mathrm{~A}_{29}\right\}$	77	$\left\{\mathrm{A}_{42}, \mathrm{~A}_{33}\right\}$	113	$\left\{\mathrm{A}_{76}, \mathrm{~A}_{57}\right\}$	149	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{67}\right\}$
6	$\left\{\mathrm{A}_{1}, \mathrm{~A}_{5}\right\}$	42	$\left\{\mathrm{A}_{29}, \mathrm{~A}_{52}\right\}$	78	$\left\{\mathrm{A}_{33}, \mathrm{~A}_{30}\right\}$	114	$\left\{\mathrm{A}_{57}, \mathrm{~A}_{59}\right\}$	150	$\left\{\mathrm{A}_{67}, \mathrm{~A}_{70}\right\}$
7	$\left\{\mathrm{A}_{5}, \mathrm{~A}_{3}\right\}$	43	$\left\{\mathrm{A}_{52}, \mathrm{~A}_{65}\right\}$	79	$\left\{\mathrm{A}_{30}, \mathrm{~A}_{37}\right\}$	115	$\left\{\mathrm{A}_{59}, \mathrm{~A}_{80}\right\}$	151	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{77}\right\}$
8	$\left\{\mathrm{A}_{3}, \mathrm{~A}_{10}\right\}$	44	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{67}\right\}$	80	$\left\{\mathrm{A}_{37}, \mathrm{~A}_{46}\right\}$	116	$\left\{\mathrm{A}_{80}, \mathrm{~A}_{69}\right\}$	152	$\left\{\mathrm{A}_{77}, \mathrm{~A}_{81}\right\}$
9	$\left\{\mathrm{A}_{10}, \mathrm{~A}_{44}\right\}$	45	$\left\{\mathrm{A}_{67}, \mathrm{~A}_{75}\right\}$	81	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{51}\right\}$	117	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{101}\right\}$	153	$\left\{\mathrm{A}_{81}, \mathrm{~A}_{83}\right\}$
10	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{46}\right\}$	46	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{138}\right\}$	82	$\left\{\mathrm{A}_{51}, \mathrm{~A}_{73}\right\}$	118	$\left\{\mathrm{A}_{101}, \mathrm{~A}_{100}\right\}$	154	$\left\{\mathrm{A}_{83}, \mathrm{~A}_{97}\right\}$
11	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{48}\right\}$	47	$\left\{\mathrm{A}_{138}, \mathrm{~A}_{115}\right\}$	83	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{132}\right\}$	119	$\left\{\mathrm{A}_{100}, \mathrm{~A}_{97}\right\}$	155	$\left\{\mathrm{A}_{97}, \mathrm{~A}_{87}\right\}$
12	$\left\{\mathrm{A}_{48}, \mathrm{~A}_{70}\right\}$	48	$\left\{\mathrm{A}_{115}, \mathrm{~A}_{125}\right\}$	84	$\left\{\mathrm{A}_{132}, \mathrm{~A}_{138}\right\}$	120	$\left\{\mathrm{A}_{97}, \mathrm{~A}_{114}\right\}$	156	$\left\{\mathrm{A}_{87}, \mathrm{~A}_{86}\right.$ \}
13	$\left\{\mathrm{A}_{70}, \mathrm{~A}_{75}\right\}$	49	$\left\{\mathrm{A}_{125}, \mathrm{~A}_{98}\right\}$	85	$\left\{\mathrm{A}_{138}, \mathrm{~A}_{96}\right\}$	121	$\left\{\mathrm{A}_{114}, \mathrm{~A}_{79}\right\}$	157	$\left\{\mathrm{A}_{86}, \mathrm{~A}_{93}\right\}$
14	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{66}\right\}$	50	$\left\{\mathrm{A}_{98}, \mathrm{~A}_{66}\right\}$	86	$\left\{\mathrm{A}_{96}, \mathrm{~A}_{68}\right\}$	122	$\left\{\mathrm{A}_{79}, \mathrm{~A}_{64}\right\}$	158	$\left\{\mathrm{A}_{93}, \mathrm{~A}_{69}\right\}$
15	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{49}\right\}$	51	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{60}\right\}$	87	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{50}\right\}$	123	$\left\{\mathrm{A}_{64}, \mathrm{~A}_{58}\right\}$	159	$\left\{\mathrm{A}_{69}, \mathrm{~A}_{84}\right\}$
16	$\left\{\mathrm{A}_{49}, \mathrm{~A}_{56}\right\}$	52	$\left\{\mathrm{A}_{60}, \mathrm{~A}_{102}\right\}$	88	$\left\{\mathrm{A}_{50}, \mathrm{~A}_{46}\right\}$	124	$\left\{\mathrm{A}_{58}, \mathrm{~A}_{48}\right\}$	160	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{86}\right\}$
17	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{24}\right\}$	53	$\left\{\mathrm{A}_{102}, \mathrm{~A}_{118}\right\}$	89	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{33}\right\}$	125	$\left\{\mathrm{A}_{48}, \mathrm{~A}_{66}\right\}$	161	$\left\{\mathrm{A}_{86}, \mathrm{~A}_{60}\right\}$
18	$\left\{\mathrm{A}_{24}, \mathrm{~A}_{32}\right\}$	54	$\left\{\mathrm{A}_{118}, \mathrm{~A}_{130}\right\}$	90	$\left\{\mathrm{A}_{33}, \mathrm{~A}_{46}\right\}$	126	$\left\{\mathrm{A}_{66}, \mathrm{~A}_{61}\right\}$	162	$\left\{\mathrm{A}_{60}, \mathrm{~A}_{78}\right\}$
19	$\left\{\mathrm{A}_{32}, \mathrm{~A}_{48}\right\}$	55	$\left\{\mathrm{A}_{130}, \mathrm{~A}_{126}\right\}$	91	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{39}\right\}$	127	$\left\{\mathrm{A}_{61}, \mathrm{~A}_{59}\right\}$	163	$\left\{\mathrm{A}_{78}, \mathrm{~A}_{72}\right\}$
20	$\left\{\mathrm{A}_{48}, \mathrm{~A}_{44}\right\}$	56	$\left\{\mathrm{A}_{126}, \mathrm{~A}_{143}\right\}$	92	$\left\{\mathrm{A}_{39}, \mathrm{~A}_{74}\right\}$	128	$\left\{\mathrm{A}_{59}, \mathrm{~A}_{78}\right\}$	164	$\left\{\mathrm{A}_{72}, \mathrm{~A}_{82}\right\}$
21	$\left\{\mathrm{A}_{44}, \mathrm{~A}_{75}\right\}$	57	$\left\{\mathrm{A}_{143}, \mathrm{~A}_{149}\right\}$	93	$\left\{\mathrm{A}_{74}, \mathrm{~A}_{62}\right\}$	129	$\left\{\mathrm{A}_{78}, \mathrm{~A}_{85}\right\}$	165	$\left\{\mathrm{A}_{82}, \mathrm{~A}_{95}\right\}$
22	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{75}\right\}$	58	$\left\{\mathrm{A}_{149}, \mathrm{~A}_{132}\right\}$	94	$\left\{\mathrm{A}_{62}, \mathrm{~A}_{81}\right\}$	130	$\left\{\mathrm{A}_{85}, \mathrm{~A}_{89}\right\}$	166	$\left\{\mathrm{A}_{95}, \mathrm{~A}_{84}\right\}$
23	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{65}\right\}$	59	$\left\{\mathrm{A}_{132}, \mathrm{~A}_{145}\right\}$	95	$\left\{\mathrm{A}_{81}, \mathrm{~A}_{108}\right\}$	131	$\left\{\mathrm{A}_{89}, \mathrm{~A}_{86}\right\}$	167	\{ $\mathrm{A}_{84}, \mathrm{~A}_{98}$ \}
24	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{104}\right\}$	60	$\left\{\mathrm{A}_{145}, \mathrm{~A}_{132}\right\}$	96	$\left\{\mathrm{A}_{108}, \mathrm{~A}_{96}\right\}$	132	$\left\{\mathrm{A}_{86}, \mathrm{~A}_{84}\right\}$	168	$\left\{\mathrm{A}_{98}, \mathrm{~A}_{88}\right\}$
25	$\left\{\mathrm{A}_{104}, \mathrm{~A}_{75}\right\}$	61	$\left\{\mathrm{A}_{132}, \mathrm{~A}_{151}\right\}$	97	$\left\{\mathrm{A}_{96}, \mathrm{~A}_{71}\right\}$	133	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{91}\right\}$	169	$\left\{\mathrm{A}_{88}, \mathrm{~A}_{78}\right\}$
26	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{45}\right\}$	62	$\left\{\mathrm{A}_{151}, \mathrm{~A}_{75}\right\}$	98	$\left\{\mathrm{A}_{71}, \mathrm{~A}_{72}\right\}$	134	$\left\{\mathrm{A}_{91}, \mathrm{~A}_{73}\right\}$	170	$\left\{\mathrm{A}_{78}, \mathrm{~A}_{88}\right\}$
27	$\left\{\mathrm{A}_{45}, \mathrm{~A}_{60}\right\}$	63	$\left\{\mathrm{A}_{75}, \mathrm{~A}_{47}\right\}$	99	$\left\{\mathrm{A}_{72}, \mathrm{~A}_{53}\right\}$	135	$\left\{\mathrm{A}_{73}, \mathrm{~A}_{65}\right\}$	171	$\left\{\mathrm{A}_{88}, \mathrm{~A}_{76}\right\}$
28	$\left\{\mathrm{A}_{60}, \mathrm{~A}_{26}\right\}$	64	$\left\{\mathrm{A}_{47}, \mathrm{~A}_{41}\right\}$	100	$\left\{\mathrm{A}_{53}, \mathrm{~A}_{46}\right\}$	136	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{80}\right\}$	172	$\left\{\mathrm{A}_{76}, \mathrm{~A}_{88}\right\}$
29	$\left\{\mathrm{A}_{26}, \mathrm{~A}_{17}\right\}$	65	$\left\{\mathrm{A}_{41}, \mathrm{~A}_{23}\right\}$	101	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{61}\right\}$	137	$\left\{\mathrm{A}_{80}, \mathrm{~A}_{56}\right\}$	173	$\left\{\mathrm{A}_{88}, \mathrm{~A}_{84}\right\}$
30	$\left\{\mathrm{A}_{17}, \mathrm{~A}_{36}\right\}$	66	$\left\{\mathrm{A}_{23}, \mathrm{~A}_{65}\right\}$	102	$\left\{\mathrm{A}_{61}, \mathrm{~A}_{90}\right\}$	138	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{63}\right\}$	174	$\left\{\mathrm{A}_{84}, \mathrm{~A}_{85}\right\}$
31	$\left\{\mathrm{A}_{36}, \mathrm{~A}_{46}\right\}$	67	$\left\{\mathrm{A}_{65}, \mathrm{~A}_{52}\right\}$	103	$\left\{\mathrm{A}_{90}, \mathrm{~A}_{55}\right\}$	139	$\left\{\mathrm{A}_{63}, \mathrm{~A}_{67}\right\}$	175	$\left\{\mathrm{A}_{85}, \mathrm{~A}_{78}\right\}$
32	$\left\{\mathrm{A}_{46}, \mathrm{~A}_{93}\right\}$	68	$\left\{\mathrm{A}_{52}, \mathrm{~A}_{36}\right\}$	104	$\left\{\mathrm{A}_{55}, \mathrm{~A}_{101}\right\}$	140	$\left\{\mathrm{A}_{67}, \mathrm{~A}_{85}\right\}$	176	$\left\{\mathrm{A}_{78}, \mathrm{~A}_{68}\right\}$
33	$\left\{\mathrm{A}_{93}, \mathrm{~A}_{86}\right\}$	69	$\left\{\mathrm{A}_{36}, \mathrm{~A}_{63}\right\}$	105	$\left\{\mathrm{A}_{101}, \mathrm{~A}_{83}\right\}$	141	$\left\{\mathrm{A}_{85}, \mathrm{~A}_{88}\right\}$	177	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{68}\right\}$
34	$\left\{\mathrm{A}_{86}, \mathrm{~A}_{36}\right\}$	70	$\left\{\mathrm{A}_{63}, \mathrm{~A}_{49}\right\}$	106	$\left\{\mathrm{A}_{83}, \mathrm{~A}_{82}\right\}$	142	$\left\{\mathrm{A}_{88}, \mathrm{~A}_{87}\right\}$	178	$\left\{\mathrm{A}_{68}, \mathrm{~A}_{71}\right\}$
35	$\left\{\mathrm{A}_{36}, \mathrm{~A}_{56}\right\}$	71	$\left\{\mathrm{A}_{49}, \mathrm{~A}_{62}\right\}$	107	$\left\{\mathrm{A}_{82}, \mathrm{~A}_{99}\right\}$	143	\{ $\left.\mathrm{A}_{87}, \mathrm{~A}_{94}\right\}$		
36	$\left\{\mathrm{A}_{56}, \mathrm{~A}_{73}\right\}$	72	$\left\{\mathrm{A}_{62}, \mathrm{~A}_{40}\right\}$	108	$\left\{\mathrm{A}_{99}, \mathrm{~A}_{76}\right\}$	144	\{ $\left.\mathrm{A}_{94}, \mathrm{~A}_{98}\right\}$		

The If-then rules have evaluated for the sets of Table 10. PSO function algorithm is applied to obtain the w_{i} weights and calculate the value of the defuzzification coefficient X_{i}. Table 11 illustrates these steps:

Table 11. Evaluation of the $I f$-then rule and w_{i} results of ARIMA data using PSO function

| $\#$ | Matching Measure If - then | Resultant Weights | $\#$ | Matching Measure If - then | Resultant Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{19} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{39}$ | $\mathrm{w}_{1}=0.7487$ and $\mathrm{w}_{2}=0.143$ | 90 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{46} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{33}$ | $\mathrm{w}_{1}=0.7503$ and $\mathrm{w}_{2}=0.2261$ |
| 2 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{3} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{19}$ | $\mathrm{w}_{1}=0.6097$ and $\mathrm{w}_{2}=0.4183$ | 91 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{39} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{46}$ | $\mathrm{w}_{1}=0.687$ and $\mathrm{w}_{2}=0.4977$ |
| 3 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{12} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{3}$ | $\mathrm{w}_{1}=0.704$ and $\mathrm{w}_{2}=0.3028$ | 92 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{74} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{39}$ | $\mathrm{w}_{1}=0.5328$ and $\mathrm{w}_{2}=0.4947$ |
| 4 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{10} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{12}$ | $\mathrm{w}_{1}=0.4378$ and $\mathrm{w}_{2}=0.493$ | 93 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{62} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{74}$ | $\mathrm{w}_{1}=0.5521$ and $\mathrm{w}_{2}=0.5013$ |
| 5 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{1} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{10}$ | $\mathrm{w}_{1}=0.7465$ and $\mathrm{w}_{2}=0.2602$ | 94 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{81} \wedge^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{62}$ | $\mathrm{w}_{1}=0.6606$ and $\mathrm{w}_{2}=0.5044$ |
| 6 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{5} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{1}$ | $\mathrm{w}_{1}=0.75$ and $\mathrm{w}_{2}=0.2363$ | 95 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{108} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{81}$ | $\mathrm{w}_{1}=0.5127$ and $\mathrm{w}_{2}=0.5$ |
| 7 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{3} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{5}$ | $\mathrm{w}_{1}=0.7135$ and $\mathrm{w}_{2}=0.3432$ | 96 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{96} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{108}$ | $\mathrm{w}_{1}=0.6475$ and $\mathrm{w}_{2}=0.2382$ |
| 8 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{10} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{3}$ | $\mathrm{w}_{1}=0.75$ and $\mathrm{w}_{2}=0.5$ | 97 | $\mathrm{~F}(\mathrm{t}-1)=\mathrm{A}_{71} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{96}$ | $\mathrm{w}_{1}=0.7246$ and $\mathrm{w}_{2}=0.2596$ |

9	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{44} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{10}$	$\mathrm{w}_{1}=0.7351$ and $\mathrm{w}_{2}=0.3326$	98	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{72} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{71}$	$\mathrm{w}_{1}=0.5805$ and ${ }_{2}=0.3354$
10	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{46} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{44}$	$\mathrm{w}_{1}=0.6531$ and $\mathrm{w}_{2}=0.3645$	99	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{53} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{72}$	$\mathrm{w}_{1}=0.7055$ and $\mathrm{w}_{2}=0.228$
11	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{48} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{46}$	$\mathrm{w}_{1}=0.6438$ and $\mathrm{w}_{2}=0.4851$	100	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{46} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{53}$	$\mathrm{w}_{1}=0.7182$ and $\mathrm{w}_{2}=0.3456$
12	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{70} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{48}$	$\mathrm{w}_{1}=0.7822$ and $\mathrm{w}_{2}=0.2595$	101	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{61} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{46}$	$\mathrm{w}_{1}=0.7513$ and $\mathrm{w}_{2}=0.4257$
13	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{70}$	$\mathrm{w}_{1}=0.4632$ and $\mathrm{w}_{2}=0.5104$	102	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{90} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{61}$	$\mathrm{w}_{1}=0.7252$ and $\mathrm{w}_{2}=0.1348$
14	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{66} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.1828$ and $\mathrm{w}_{2}=0.6967$	103	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{55} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{90}$	$\mathrm{w}_{1}=0.7549$ and $\mathrm{w}_{2}=0.4099$
15	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{49} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{66}$	$\mathrm{w}_{1}=0.7114$ and $\mathrm{w}_{2}=0.3067$	104	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{101} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{55}$	$\mathrm{w}_{1}=0.6263$ and $\mathrm{w}_{2}=0.3618$
16	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{56} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{49}$	$\mathrm{w}_{1}=0.6269$ and $\mathrm{w}_{2}=0.2323$	105	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{83}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{101}$	$\mathrm{w}_{1}=0.5006$ and $\mathrm{w}_{2}=0.4546$
17	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{24} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{56}$	$\mathrm{w}_{1}=0.5328$ and $\mathrm{w}_{2}=0.428$	106	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{82} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{83}$	$\mathrm{w}_{1}=0.6719$ and $\mathrm{w}_{2}=0.4063$
18	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{32} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{24}$	$\mathrm{w}_{1}=0.6737$ and $\mathrm{w}_{2}=0.4447$	107	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{99} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{82}$	$\mathrm{w}_{1}=0.4528$ and $\mathrm{w}_{2}=0.4903$
19	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{48} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{32}$	$\mathrm{w}_{1}=0.5091$ and $\mathrm{w}_{2}=0.5056$	108	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{76} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{99}$	$\mathrm{w}_{1}=0.7624$ and $\mathrm{w}_{2}=0.262$
20	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{44} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{48}$	$\mathrm{w}_{1}=0.7145$ and $\mathrm{w}_{2}=0.4449$	109	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{86} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{76}$	$\mathrm{w}_{1}=0.7417$ and $\mathrm{w}_{2}=0.0599$
21	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{44}$	$\mathrm{w}_{1}=0.5656$ and $\mathrm{w}_{2}=0.5052$	110	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{40} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{86}$	$\mathrm{w}_{1}=0.7501$ and $\mathrm{w}_{2}=0.2796$
22	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.7677$ and $\mathrm{w}_{2}=0.1897$	111	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{57} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{40}$	$\mathrm{w}_{1}=0.7146$ and $\mathrm{w}_{2}=0.4236$
23	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.7731$ and $\mathrm{w}_{2}=0.4012$	112	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{76} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{57}$	$\mathrm{w}_{1}=0.4738$ and $\mathrm{w}_{2}=0.4886$
24	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{104} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\mathrm{w}_{1}=0.6309 \mathrm{and} \mathrm{w}_{2}=0.3002$	113	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{57} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{76}$	$\mathrm{w}_{1}=0.8535$ and $\mathrm{w}_{2}=0.1378$
25	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{104}$	$\mathrm{w}_{1}=0.3926$ and $\mathrm{w}_{2}=0.4122$	114	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{59} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{57}$	$\mathrm{w}_{1}=0.8854$ and $\mathrm{w}_{2}=0.2278$
26	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{45} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.6742$ and $\mathrm{w}_{2}=0.351$	115	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{80} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{59}$	$\mathrm{w}_{1}=0.4777$ and $\mathrm{w}_{2}=0.5171$
27	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{60} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{45}$	$\mathrm{w}_{1}=0.4119$ and $\mathrm{w}_{2}=0.4616$	116	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{69} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{80}$	$\mathrm{w}_{1}=0.7474$ and $\mathrm{w}_{2}=0.3818$
28	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{26} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{60}$	$\mathrm{w}_{1}=0.6142$ and $\mathrm{w}_{2}=0.2847$	117	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{101} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{69}$	$\mathrm{w}_{1}=0.5926$ and $\mathrm{w}_{2}=0.4733$
29	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{17} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{26}$	$\mathrm{w}_{1}=0.7736$ and $\mathrm{w}_{2}=0.3248$	118	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{100} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{101}$	$\mathrm{w}_{1}=0.75$ and $\mathrm{w}_{2}=0.2348$
30	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{36} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{17}$	$\mathrm{w}_{1}=0.697$ and $\mathrm{w}_{2}=0.4019$	119	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{97} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{100}$	$\mathrm{w}_{1}=0.7565$ and $\mathrm{w}_{2}=0.3083$
31	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{46} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{36}$	$\mathrm{w}_{1}=0.7608$ and $\mathrm{w}_{2}=0.5061$	120	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{114} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{97}$	$\mathrm{w}_{1}=0.7268$ and $\mathrm{w}_{2}=0.1549$
32	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{93} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{46}$	$\mathrm{w}_{1}=0.767 \mathrm{and} \mathrm{w}_{2}=0.259$	121	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{79} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{114}$	$\mathrm{w}_{1}=0.5511$ and $\mathrm{w}_{2}=0.333$
33	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{86} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{93}$	$\mathrm{w}_{1}=0.374 \mathrm{and} \mathrm{w}_{2}=0.3985$	122	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{64} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{79}$	$\mathrm{w}_{1}=0.6368$ and $\mathrm{w}_{2}=0.3169$
34	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{36} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{86}$	$\mathrm{w}_{1}=0.7376$ and $\mathrm{w}_{2}=0.2893$	123	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{58} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{64}$	$\mathrm{w}_{1}=0.6982$ and $\mathrm{w}_{2}=0.2543$
35	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{56} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{36}$	$\mathrm{w}_{1}=0.7157$ and $\mathrm{w}_{2}=0.4127$	124	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{48} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{58}$	$\mathrm{w}_{1}=0.6217$ and $\mathrm{w}_{2}=0.4433$
36	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{56}$	$\mathrm{w}_{1}=0.486$ and $\mathrm{w}_{2}=0.5001$	125	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{66}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{48}$	$\mathrm{w}_{1}=0.807$ and $\mathrm{w}_{2}=0.1943$
37	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{63} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.7294 \mathrm{and} \mathrm{w}_{2}=0.2186$	126	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{61} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{66}$	$\mathrm{w}_{1}=0.6308$ and $\mathrm{w}_{2}=0.3491$
38	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{55} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{63}$	$\mathrm{w}_{1}=0.4108$ and ${ }_{2}=0.5$	127	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{59} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{61}$	$\mathrm{w}_{1}=0.7156$ and $\mathrm{w}_{2}=0.3726$
39	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{41} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{55}$	$\mathrm{w}_{1}=0.6874$ and $\mathrm{w}_{2}=0.2841$	128	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{78} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{59}$	$\mathrm{w}_{1}=0.7132$ and $\mathrm{w}_{2}=0.3494$
40	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{41} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{41}$	$\mathrm{w}_{1}=0.4391$ and $\mathrm{w}_{2}=0.4983$	129	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{85} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{78}$	$\mathrm{w}_{1}=0.7104$ and $\mathrm{w}_{2}=0.3186$
41	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{29} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{41}$	$\mathrm{w}_{1}=0.6953$ and $\mathrm{w}_{2}=0.4059$	130	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{89} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{85}$	$\mathrm{w}_{1}=0.4947$ and $\mathrm{w}_{2}=0.5063$
42	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{52} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{29}$	$\mathrm{w}_{1}=0.6359$ and $\mathrm{w}_{2}=0.4964$	131	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{86} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{89}$	$\mathrm{w}_{1}=0.9188$ and $\mathrm{w}_{2}=0.0821$
43	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{52}$	$\mathrm{w}_{1}=0.5195$ and $\mathrm{w}_{2}=0.5137$	132	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{84}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{86}$	$\mathrm{w}_{1}=0.5283$ and $\mathrm{w}_{2}=0.5$
44	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{67} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\mathrm{w}_{1}=0.5364$ and $\mathrm{w}_{2}=0.4976$	133	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{91} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{84}$	$\mathrm{w}_{1}=0.7147$ and $\mathrm{w}_{2}=0.2121$
45	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{67}$	$\mathrm{w}_{1}=0.751$ and $\mathrm{w}_{2}=0.5481$	134	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{91}$	$\mathrm{w}_{1}=0.468$ and $\mathrm{w}_{2}=0.4595$
46	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{138} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.5548$ and $\mathrm{w}_{2}=0.4612$	135	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.6066$ and ${ }_{2}=0.4542$
47	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{115} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{138}$	$\mathrm{w}_{1}=0.5589$ and $\mathrm{w}_{2}=0.4447$	136	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{80} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\mathrm{w}_{1}=0.7016$ and $\mathrm{w}_{2}=0.2039$
48	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{125} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{115}$	$\mathrm{w}_{1}=0.4047$ and $\mathrm{w}_{2}=0.5138$	137	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{56} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{80}$	$\mathrm{w}_{1}=0.5363$ and $\mathrm{w}_{2}=0.4423$
49	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{98}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{125}$	$\mathrm{w}_{1}=0.7511$ and $\mathrm{w}_{2}=0.1019$	138	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{63} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{56}$	$\mathrm{w}_{1}=0.5044 \mathrm{and} \mathrm{w}_{2}=0.5319$
50	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{66}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{98}$	$\mathrm{w}_{1}=0.4912$ and $\mathrm{w}_{2}=0.4106$	139	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{67} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{63}$	$\mathrm{w}_{1}=0.6958$ and $\mathrm{w}_{2}=0.4054$
51	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{60} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{66}$	$\mathrm{w}_{1}=0.7309$ and $\mathrm{w}_{2}=0.4583$	140	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{85}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{67}$	$\mathrm{w}_{1}=0.6043$ and $\mathrm{w}_{2}=0.4482$
52	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{102} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{60}$	$\mathrm{w}_{1}=0.7133$ and $\mathrm{w}_{2}=0.429$	141	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{88} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{85}$	$\mathrm{w}_{1}=0.7376$ and $\mathrm{w}_{2}=0.2569$
53	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{118} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{102}$	$\mathrm{w}_{1}=0.6604$ and $\mathrm{w}_{2}=0.4125$	142	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{87} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{88}$	$\mathrm{w}_{1}=0.7427$ and $\mathrm{w}_{2}=0.2808$
54	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{130} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{118}$	$\mathrm{w}_{1}=0.5813$ and $\mathrm{w}_{2}=0.4261$	143	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{94} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{87}$	$\mathrm{w}_{1}=0.5315$ and ${ }_{2}=0.5$
55	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{126} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{130}$	$\mathrm{w}_{1}=0.552$ and $\mathrm{w}_{2}=0.5052$	144	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{98} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{94}$	$\mathrm{w}_{1}=0.7529$ and $\mathrm{w}_{2}=0.2425$
56	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{143} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{126}$	$\mathrm{w}_{1}=0.7678$ and $\mathrm{w}_{2}=0.2758$	145	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{95} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{98}$	$\mathrm{w}_{1}=0.7488$ and $\mathrm{w}_{2}=0.249$
57	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{149} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{143}$	$\mathrm{w}_{1}=0.5902$ and $\mathrm{w}_{2}=0.3586$	146	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{95} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{95}$	$\mathrm{w}_{1}=0.9288$ and $\mathrm{w}_{2}=0.0136$
58	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{132} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{149}$	$\mathrm{w}_{1}=0.4768$ and $\mathrm{w}_{2}=0.5332$	147	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{81} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{95}$	$\mathrm{w}_{1}=0.4357$ and $\mathrm{w}_{2}=0.4938$
59	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{145} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{132}$	$\mathrm{w}_{1}=0.4827$ and $\mathrm{w}_{2}=0.4963$	148	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{81}$	$\mathrm{w}_{1}=0.735{\text { and } \mathrm{w}_{2}=0.2266}^{\text {d }}$
60	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{132} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{145}$	$\mathrm{w}_{1}=0.9724$ and $\mathrm{w}_{2}=0.0927$	149	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{67} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.516$ and $\mathrm{w}_{2}=0.4878$
61	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{151} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{132}$	$\mathrm{w}_{1}=0.6314 \mathrm{and}^{2}=0.1191$	150	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{70} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{67}$	$\mathrm{w}_{1}=0.7567 \mathrm{and}^{2}=0.2763$
62	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{75} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{151}$	$\mathrm{w}_{1}=0.7653$ and $\mathrm{w}_{2}=0.081$	151	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{77} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{70}$	$\mathrm{w}_{1}=0.7894$ and $\mathrm{w}_{2}=0.2407$
63	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{47} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{75}$	$\mathrm{w}_{1}=0.7468$ and $\mathrm{w}_{2}=0.196$	152	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{81} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{77}$	$\mathrm{w}_{1}=0.4414$ and $\mathrm{w}_{2}=0.5726$
64	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{41} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{47}$	$\mathrm{w}_{1}=0.6782$ and $\mathrm{w}_{2}=0.2161$	153	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{83}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{81}$	$\mathrm{w}_{1}=0.6822$ and $\mathrm{w}_{2}=0.3866$
65	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{23} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{41}$	$\mathrm{w}_{1}=0.7474$ and $\mathrm{w}_{2}=0.4456$	154	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{97} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{83}$	$\mathrm{w}_{1}=0.4818$ and $\mathrm{w}_{2}=0.5082$
66	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{65}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{23}$	$\mathrm{w}_{1}=0.7203$ and $\mathrm{w}_{2}=0.2811$	155	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{87}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{97}$	$\mathrm{w}_{1}=0.4767$ and $\mathrm{w}_{2}=0.4963$
67	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{52} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{65}$	$\mathrm{w}_{1}=0.762$ and $\mathrm{w}_{2}=0.1469$	156	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{86} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{87}$	$\mathrm{w}_{1}=0.7048$ and $\mathrm{w}_{2}=0.3277$
68	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{36} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{52}$	$\mathrm{w}_{1}=0.7671$ and $\mathrm{w}_{2}=0.3626$	157	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{93} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{86}$	$\mathrm{w}_{1}=0.4139$ and $\mathrm{w}_{2}=0.4959$
69	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{63} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{36}$	$\mathrm{w}_{1}=0.5219$ and $\mathrm{w}_{2}=0.4792$	158	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{69} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{93}$	$\mathrm{w}_{1}=0.6327$ and $\mathrm{w}_{2}=0.388$
70	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{49} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{63}$	$\mathrm{w}_{1}=0.6871$ and $\mathrm{w}_{2}=0.3492$	159	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{84}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{69}$	$\mathrm{w}_{1}=0.7543$ and $\mathrm{w}_{2}=0.2781$
71	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{62} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{49}$	$\mathrm{w}_{1}=0.5238$ and $\mathrm{w}_{2}=0.3851$	160	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{86} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{84}$	$\mathrm{w}_{1}=0.7583$ and $\mathrm{w}_{2}=0.1238$
72	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{40} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{62}$	$\mathrm{w}_{1}=0.6617$ and $\mathrm{w}_{2}=0.2687$	161	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{60} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{86}$	$\mathrm{w}_{1}=0.7604$ and $\mathrm{w}_{2}=0.2993$
73	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{33} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{40}$	$\mathrm{w}_{1}=0.5447$ and $\mathrm{w}_{2}=0.4658$	162	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{78} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{60}$	$\mathrm{w}_{1}=0.6575$ and $\mathrm{w}_{2}=0.3343$
74	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{38} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{33}$	$\mathrm{w}_{1}=0.6691$ and $\mathrm{w}_{2}=0.3972$	163	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{72} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{78}$	$\mathrm{w}_{1}=0.7224$ and $\mathrm{w}_{2}=0.3211$
75	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{47} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{38}$	$\mathrm{w}_{1}=0.5203$ and $\mathrm{w}_{2}=0.4853$	164	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{82} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{72}$	$\mathrm{w}_{1}=0.6437$ and $\mathrm{w}_{2}=0.4261$
76	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{42} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{47}$	$\mathrm{w}_{1}=0.7543$ and $\mathrm{w}_{2}=0.1968$	165	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{95} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{82}$	$\mathrm{w}_{1}=0.7499$ and $\mathrm{w}_{2}=0.2202$
77	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{33} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{42}$	$\mathrm{w}_{1}=0.7497$ and $\mathrm{w}_{2}=0.215$	166	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{84}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{95}$	$\mathrm{w}_{1}=0.7421$ and $\mathrm{w}_{2}=0.3013$
78	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{30} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{33}$	$\mathrm{w}_{1}=0.5357$ and $\mathrm{w}_{2}=0.4958$	167	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{98} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{84}$	$\mathrm{w}_{1}=0.4878$ and $\mathrm{w}_{2}=0.502$
79	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{37} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{30}$	$\mathrm{w}_{1}=0.5468$ and $\mathrm{w}_{2}=0.5149$	168	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{88} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{98}$	$\mathrm{w}_{1}=0.4534 \mathrm{and}^{2}=0.4733$

80	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{46} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{37}$	$\mathrm{w}_{1}=0.5525$ and $\mathrm{w}_{2}=0.5008$	169	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{78} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{88}$	$\mathrm{w}_{1}=0.7079$ and $\mathrm{w}_{2}=0.3161$
81	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{51} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{46}$	$\mathrm{w}_{1}=0.6081$ and $\mathrm{w}_{2}=0.5258$	170	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{88}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{78}$	$\mathrm{w}_{1}=0.5717$ and $\mathrm{w}_{2}=0.3958$
82	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{73} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{51}$	$\mathrm{w}_{1}=0.7559$ and $\mathrm{w}_{2}=0.569$	171	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{76} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{88}$	$\mathrm{w}_{1}=0.7202$ and $\mathrm{w}_{2}=0.3145$
83	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{132} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{73}$	$\mathrm{w}_{1}=0.6315$ and $\mathrm{w}_{2}=0.5015$	172	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{88} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{76}$	$\mathrm{w}_{1}=0.75 \mathrm{and} \mathrm{w}_{2}=0.2396$
84	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{138} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{132}$	$\mathrm{w}_{1}=0.751$ and $\mathrm{w}_{2}=0.1005$	173	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{84}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{88}$	$\mathrm{w}_{1}=0.8958$ and $\mathrm{w}_{2}=0.113$
85	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{96} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{138}$	$\mathrm{w}_{1}=0.4662$ and $\mathrm{w}_{2}=0.3534$	174	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{85}{ }^{\wedge} \mathrm{F}(\mathrm{t}-2)=\mathrm{A}_{84}$	$\mathrm{w}_{1}=0.749 \mathrm{and} \mathrm{w}_{2}=0.2235$
86	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{68} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{96}$	$\mathrm{w}_{1}=0.7509$ and $\mathrm{w}_{2}=.1494$	175	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{78} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{85}$	$\mathrm{w}_{1}=0.6512$ and $\mathrm{w}_{2}=0.2885$
87	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{50} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{68}$	$\mathrm{w}_{1}=0.5769$ and $\mathrm{w}_{2}=0.3722$	176	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{68} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{78}$	$\mathrm{w}_{1}=0.5652$ and $\mathrm{w}_{2}=0.4118$
88	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{46} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{50}$	$\mathrm{w}_{1}=0.5427$ and $\mathrm{w}_{2}=0.373$	177	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{68} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{68}$	$\mathrm{w}_{1}=0.5126 \mathrm{and} \mathrm{w}_{2}=0.5058$
89	$\mathrm{F}(\mathrm{t}-1)=\mathrm{A}_{33} \wedge \mathrm{~F}(\mathrm{t}-2)=\mathrm{A}_{46}$	$\mathrm{w}_{1}=0.7436$ and $\mathrm{w}_{2}=0.3146$			

Table 11 shows that the number of fuzzy rules for all table results includes only two conditions. To illustrate, we have the fuzzy rule (1) in the table where weights are $\left(w_{1}=0.7487, w_{2}=0.143\right)$ if the value of the linguistic variable in time $F(t-1)$ is equal to A_{19}. The value of the linguistic variable in time $F(t-2)$ equals A_{39}. Through the values of weights obtained using the PSO function, the formula of the defuzzification coefficient X_{i} is applied and used in the defuzzing process to obtain the predictive values of the time series as shown in Table 12.

Table 12. Predictive values to model the proposed procedure after defuzzification

Linguistic Variable	Month	Year										
***	Jan	do	663.4145	Jan.	-i	650.8188	Jan.	$\underset{\sim}{\mathrm{N}}$	610.9404	Jan.	$\stackrel{\circ}{\circ}$	
***	Feb		695.9739	Feb.		622.6244	Feb.		625.2845	Feb.		
***	Mar		623.7066	March		555.0911	March		619.0692	March		
383.7008	April		539.9798	April		562.1425	April		617.256	April		
407.6307	May		522.3842	May		509.824	May		581.7746	May		
398.8487	June		632.4284	June		486.8357	June		557.2747	June		
373.1327	July		677.6205	July		528.3815	July		542.2177	July		
382.2639	Aug		707.9736	August		606.013	August		553.1081	August		
377.4583	Sep		699.4146	Sep.		508.8152	Sep		568.756	Sep.		
403.2044	Oct		741.5103	October		634.8233	Oct		584.1786	October		
488.7415	Nov		759.8507	Nov.		582.0539	Nov		583.8014	Nov.		
490.0456	Dec		711.4485	Dec.		580.4466	Dec		625.0009	Dec.		
498.0698	Jan	రిం	742.5951	Jan.	Oి,	629.2602	Jan.	$\stackrel{m}{2}$	597.4777	Jan.	$\stackrel{\hat{N}}{\hat{N}}$	
557.1461	Feb		712.5502	Feb.		569.6407	Feb.		593.0387	Feb.		
560.7192	Mar		760.3838	March		597.6857	March		613.1592	March		
543.3961	April		564.3705	April		474.0549	April		547.0503	April		
492.2644	May		493.1036	May		521.8541	May		585.485	May		
519.9787	June		478.9255	June		571.4773	June		595.9629	June		
438.3963	July		430.1039	July		522.1968	July		523.4777	July		
451.5707	Aug.		535.4502	August		521.1665	August		577.347	August		
498.3054	Sep.		509.6862	Sep.		581.1047	Sep.		552.3199	Sep.		
481.3316	Oct.		464.8474	October		546.3205	Oct.		586.2611	Oct.		
567.5838	Nov.		539.7014	Nov.		630.7878	Nov.		612.2019	Nov.		
564.8579	Dec.		501.9928	Dec.		633.9463	Dec.		589.6598	Dec.		
541.8329	Jan.	৪	528.8161	Jan.	$\stackrel{0}{i}$	620.5329	Jan.	$\stackrel{ \pm}{\underset{\sim}{N}}$	622.4905	Jan.	$\stackrel{\infty}{\underset{\sim}{N}}$	
643.8508	Feb.		470.5099	Feb		664.7681	Feb.		600.2465	Feb.		
565.1427	March		456.8938	Mar		580.1242	March		567.2625	March		
485.0507	April		470.0977	Apr		538.6999	April		594.3109	April		
527.7205	May		496.2688	May		524.1486	May		567.9804	May		
442.1753	June		484.1171	June		500.8726	June		596.4285	June		
419.0493	July		458.414	July		540.134	July		585.3918	July		
464.0198	Aug.		444.8407	Aug		533.1843	Aug.		593.9333	August		
490.8931	Sep.		466.7069	Sep		522.567	Sep.		573.8334	Sep.		
607.3548	Oct.		487.0426	Oct		572.692	Oct.		543.7246	Oct.		
596.0608	Nov.		505.3747	Nov		592.2351	Nov.		545.4309	Nov.		
465.9012	Dec.		563.6063	Dec		601.9455	Dec.		557.1203	Dec.		
514.8782	Jan.	ồ	708.6592	Jan	亏্ㄱN	595.6258	Jan.	$\stackrel{n}{c}$				
561.1036	Feb.		730.0224	Feb		593.3779	Feb.					
530.5382	March		618.4697	Mar		607.066	March					
511.7183	April		546.3573	Apr		558.638	April					
477.4272	May		504.3902	May		541.2054	May					
474.0119	June		493.4597	June		581.3748	June					
447.5377	July		453.703	July		515.3114	July					
504.0109	Aug.		493.9778	Aug		532.2223	Aug.					
543.2326	Sep.		471.8827	Sep		543.46	Sep.					
540.2437	Oct.		568.3954	Oct		594.9789	Oct.					
560.2515	Nov.		533.5177	Nov		600.6681	Nov.					
722.4721	Dec.		575.55	Dec		592.3224	Dec.					

Figure 8 shows the predictive values of the proposed procedure that can be symbolized ARIMA-Fuzzypso model.

Figure 8. Predictive values of the proposed ARIMA-Fuzzypso model

3.4. Comparison of results

The criteria of RMSE, MAE, and MAPE have calculated to compare the three models and find out the best model to predict the TDS in drinking water after calculating the predictive values of each method and comparing them with the actual values. Table 13 shows the results of the comparison.

Table 13. Comparison of prediction for the models

No.	Model	Criteria	RMSE	MAE
1	ARIMA(3,1,3)	51.131	39.658	7.910
2	Fuzzypos	48.357	37.250	6.862
3	ARIMA-Fuzzypos	46.016	35.402	6.128

It is clear from the table that the proposed ARIMA-Fuzzypos model has the lowest value of the criteria in Table 13. This indicates the efficiency of the proposal compared to the two models ARIMA $(3,1,3)$ and Fuzzypos . Therefore, it is considered the best model to predict the data of the studied phenomenon and it has ability to more predict with better performance.

4. Conclusions

1- When studying the B-J method for testing the dissolved solids for drinking water in Baghdad city, it was found that the ARIMA $(3,1,3)$ model is appropriate for the time series data which has the lowest value in the statistical criteria of RMSE, MAE, MAPE with its significant parameters.
2- There are no frequencies in FSGs elements in the proposal when calculating the high order fuzzy time series of the ARIMA series. In addition, all fuzzy rules included only two conditions and number of weights per rule is two. This did not appear when studying actual time series in high order fuzzy time series.
3- The use of the trapezoidal membership function in the fuzzification of time series data with the application of the PSO algorithm influenced the results of the predictive values. The fuzzy method has a mechanical ability to find solutions to different field's, which in turn affected the results of the proposal model by owning the lowest values in the comparison criteria.
4- Use the adaptation procedure between the high order fuzzy time series method and the B-J method as an alternative to classical statistical methods. It has given better predictive results if the B-J method was used only on the data. Thus, the best criteria of the proposed model appeared was ARIMA-Fuzzypos which improved the quality of the model with increased predictability, followed by the Fuzzypos model, while the latter is the ARIMA model.

5. Recommendations

1- Using the high order fuzzy time series to the dissolved solids data for drinking water in Baghdad city, due to its high accuracy in data processing and obtaining the best data predicate.
2 - Application of the ARIMA-Fuzzypos of proposed model for data dissolved solids for drinking water in the city of Baghdad, where it proved its accuracy and superiority.

3 - Use of high order fuzzy time series method for multivariate to be compared with the vector autoregressive moving average (VARMA) method by taking several chemical examinations of the drinking water pollution.

References

[1] S.A. Salman, Using the Fuzzy Sets and Box-Jenkins Models in Time Series to Prediction Some Rate of Pollution in Baghdad City, Master Thesis, Administration and Economics College, University of Baghdad, 2014.
[2] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: Forecasting and Control, $4{ }^{\text {rd }}$ Edition, Holden-Day, San Francisco, 2016.
[3] P.J. Brockwell and R.A. Davis, Introduction to Time Series and Forecasting, $3{ }^{\text {rd }}$ Edition, Springer-Verlag, New York, 2016.
[4] W.W.S. Wei, Time Series Analysis: Univariate and Multivariate Methods, $2^{\text {nd }}$ Edition, Addison-Wesley Publishing Company. USA, 2006.
[5] A. Rath, K. S. Bhoi, S. Samantaray and P. C. Swain, Flow Forecasting of Hirakud Reservoir with ARIMA Model, International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), IEEE. pp:2952-2960, 2017.
[6] S. Makridakis, S.C. Wheelwright and R.J. Hyndman, Forecasting: Methods and Applications, $3{ }^{\text {rd }}$ Edition, John Wiley \& Sons, Inc. Publication, New York, USA, 2008.
[7] Q. Song and B.S. Chissom, Forecasting Enrolments with Fuzzy Time Series-part I, Fuzzy Sets and Systems, Vol.54, Issue1, pp.1-9, 1993.
[8] J.R. Poulsen, Fuzzy Time Series Forecasting- Developing a New Forecasting Model Based on High Order Fuzzy Time Series, Aalborg University Esbjerg (AAUE), Semester: CIS 4, pp.1-67, 2009.
[9] R.C. Tsaur, J.C. Yang and H.F. Wang, Fuzzy Relation Analysis in Fuzzy Time Series Model, Computers and Mathematics with Applications, Vol.49, Issue 4, pp: 539-548, 2005.
[10] J. Kennedy and R. Eberhart, Particle Swarm Optimization, Proceedings of ICNN'95-International Conference on Neural Networks in Australia, pp: 1942-1948, 2002. Doi:10.1109/ICNN.1995.488968.
[11] L.A. Zadeh, Fuzzy Sets, Information and Control, Vol.8, Issue 3, pp: 338-353, 1965.
[12] E. Bai, W.K. Wong, W.C. Chu, M. Xia, F. Pan, A Heuristic Time-Invariant Model for Fuzzy Time Series Forecasting, Expert System with Applications, Vol.38, Issue 3, pp: 2701-2707, 2011.
[13] W. Li, J. Huyan, L. Xiao, S. Tighe and L. Pei, International Roughness Index Prediction Based on Multigranularity Fuzzy Time Series and Particle Swarm Optimization, Expert Systems with Applications: X, Vol. 2, July,100006, pp:1-12, https://doi.org/10.1016/j.eswax.2019.10006, 2019.
[14] C-C. Wang, A Comparison Study Between Fuzzy Time Series Model and ARIMA Model for Forecasting Taiwan Export ,Expert System with Applications, Vol.38, no.8, pp: 9296-9304, 2011.
[15] Q. Bai, Analysis of Particle Swarm Optimization Algorithm, Computer and Information Science, Vol.3, No.1, pp: 180-184, 2010.
[16] Q. Song and B.S. Chissom, Forecasting Enrolments with Fuzzy Time Series -part II, Fuzzy Sets and Systems, Vol.62, No.1, pp:1-8, 1994.
[17]S-M. Chen, X-Y. Zou and G.C. Gunawan, Fuzzy Time Series Forecasting Based on Proportions of Intervals and Particle Swarm Optimization Techniques, Information Science, Vol.500, pp:127-139, 2019.
[18] R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence, $1^{\text {st }}$ Edition, by Academic Press, ISBN: 978-1-55860-595-4, 2001.

