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ABSTRACT   

The use of muscle activation signals in the control loop in biomechatronics systems is extremely important 

for effective and stable control. One of the methods used for this purpose is motion classification using 

electromyography (EMG) signals that reflect muscle activation. Classifying these signals with variable 

amplitude and frequency is a difficult process. On the other hand, EMG signal characteristics change over 

time depending on the person, task and duration. Various artificial intelligence-based methods are used for 

movement classification. One of these methods is machine learning. In this study, a total of 24 different 

models of 6 main machine learning algorithms were used for motion classification. With these models, 7 

different wrist and static hand gestures (rest, grip, flexion, extension, radial deviation, ulnar deviation, 

expanded palm) are classified. Test studies were carried out with 8 channels of EMG data taken from four 

subjects. Classification performances were compared in terms of classification accuracy and training time 

parameters. According to the simulation results, the Ensemble algorithm Bagged Trees model has been 

shown to have the highest classification performance with an average classification accuracy of 98.55%. 
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1. Introduction 

The surface electromyogram (EMG) contains the sum of the electrical contributions of active motor units 

detected by electrodes placed on the skin above the muscle [1]. Electromyography (EMG) signals are a type of 

bioelectric signals. They can be used for biomedical, robotics, human-computer and human-machine 

applications. The classification of these signals is an important issue in biomechatronics applications. The 

biomechatronics discipline focuses on rehabilitation robots, prosthesis, orthosis, exoskeletal robot manipulator 

and intelligent rehabilitation devices [2-4]. In particular, EMG signals are frequently used in the diagnosis and 

treatment of muscle and nerve diseases in the medical field [5-7]. 

In recent studies, statistical methods, Bayesian techniques, artificial neural networks, fuzzy approaches, neuro-

fuzzy systems and support vector machines have been used to classify EMG signals. Pfeiffer and Kunze, used 

Principle Component Analysis and multivariate discriminant algorithm for motor unit potentials [8]. Xiang et 

al., used Bayesian networks to diagnose upper limb problems. Using EMG signals, they classified 76 patients 

by disease condition and achieved a high clinical performance [9]. Abel et al., tested three different artificial 

neural network models for EMG signal classification. They used an improved backpropagation network (IBPN), 

a radial basis network (RBN), and a learning vector quantization network (LVQ). The test studies were done 

with healthy individuals and patients that have myopathic and neuropathic disorders [10]. Pandey and Mishra 

developed a novel integrated intelligent model for hierarchically correlate the sign and symptoms of the disease 

and computing cumulative confidence factor of the diseases. For this aim, it was combined with rule-based 
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reasoning, case-based reasoning, and artificial neural network structures. The test studies were performed with 

diseases of Duchenne muscular dystrophy, polymyostits, endocrine myopathy, metabolic myopathy, 

neuropathy, poliomyelitis, and myasthenia gravis [11]. Subasi et al. classified EMG signals using feed-forward 

error backpropagation artificial neural networks (FEBANN) and wavelet neural networks (WNN). 24 volunteers 

were subjected to this study, 13 of which have a neurological disease, 7 of which have myopathy and the others 

were healthy. 1200 MUP (motor unit potential) were analyzed for different volunteers. It was achieved 90.7% 

and 88% classification accuracy using WNN and FEBANN, respectively [12]. Luo et.al, developed a fuzzy 

logic algorithm to classify upper limb motions. They used flexor and extensor muscles’ EMG signals [13]. 

Kocer developed a neuro-fuzzy system for the analysis and classification of EMG signals from healthy, 

neuropathy and myopathy subjects. The number of subjects was 177. The coefficients are determined by using 

autoregressive analysis. These coefficients were applied to the neuro-fuzzy system [14]. Khezri et al., developed 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) with a 96% accuracy rate to determine motion commands 

for prosthetic hand controlling [15]. In a study carried out by M. F. Lucas et al., a method based on the discrete 

wavelet transform of EMG signals for supervised movement classification using SVM (Support Vector 

Machine) and myoelectric prostheses controlling was suggested. Within this study, 6 different hand movements 

were classified using 8-channel EMG signals. In addition, autoregressive models also have been used for EMG 

signals classification [16]. Y. Lu et al. utilized statistical models to classify EMG signals [17]. They investigated 

the performance of EM (expectation-maximization), AR (Autoregression), ARMA (Autoregressive–Moving 

Average), and ARIMA (AutoRegressive Integrated Moving Average) with different classification models. They 

achieved 93% classification accuracy using backpropagation (BP) and support vector machine (SVM) 

algorithms. Omama et al., used statistical properties of EMG signals in order to feed artificial neural network-

based muscular movements classifier e.g. MSE (mean square error), mean, variance, and mean absolute value 

[18] 

The contribution of this study to the literature is that it is the first study that examines the most suitable machine 

learning algorithms for EMG-based classification of wrist and static hand gestures and reveals the results on 

this large scale. In this context, motion classification was carried out with 24 models of six different machine 

learning algorithms using 8-channel EMG signals for different wrist and static hand gestures (rest, grip, flexion, 

extension, radial deviation, ulnar deviation, extended palm) acquired from four subjects. These methods are 

Decision Trees, Discriminant Analysis, Naive Bayes, SVM (Support Vector Machines), KNN (k-Nearest 

Neighbor) and Community Classification. Performance evaluation of these methods and comparison between 

them was made using classification accuracy and training period. According to the simulation results, the 

Ensemble algorithm Bagged Trees model has been shown to have the highest classification performance with 

an average classification accuracy of 98.55%. 

2. Material and Method 

2.1.  EMG signal analysis 

The main purpose of the electromyography technique is to examine the muscle function based on the processing 

and analysis of the electrical signals produced by the muscles. The EMG signal may be affected by external 

disturbances. These effects are anatomical and physiological features of muscles, control structure of peripheral 

nervous system, environmental electrical devices and magnetic fields. These effects need to be suppressed. 

Various filtering techniques are used for this. Otherwise, the character of the EMG signals may change. This 

will directly affect the analysis. Elimination of noises is an extremely critical process for accurate movement 

classification. 

The action potential of the motor unit is obtained by the spatial and temporal sum of the individual muscle 

action potentials for all the fibers of a single motor unit. Therefore, the EMG signal is the algebraic sum of the 

motor unit action potentials. These potentials are limited by the surface covered by the electrode used. There is 

a direct relationship between EMG and many biomechanical parameters. For example, in isometric contractions, 

there is a direct relationship between the increase in tension in the muscle and the amplitude of the EMG signal. 

It should not be forgotten that the place where the movement begins is the brain. The movement command 
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transmitted to the nerve cells reaches the muscles. The muscles contract and activate the skeletal system. 

Therefore, accurate analysis of EMG signals brings correct detection or estimation of biomechanical parameters. 

EMG signal can be obtained in two ways: non-invasively measuring surface electrodes from the skin surface 

and, measurement under the skin by reaching the muscle with needle electrodes. These electrodes are shown in 

Figure 1. The amplitude of typical EMG signals is between 400 mV and 3 mV. Therefore, the signals are first 

amplified, then processed and recorded. In biomechatronics applications, EMG signals are raised, rectified, and 

filtered for actuator control. In some techniques, normalization is also performed before classification [4,19]. 

There are several techniques that can be used in EMG Signal Analysis: Moving Average (user-selected 

window), Linear Envelope (user selectable filter frequency), RMS Analysis, Integrate over Time, EMG Power 

Spectrum (FFT), Amplitude Distribution (FFT) [20]. However, in this study raw data have been used to assess 

the ability of each algorithm to extract features from unfiltered data. This is extremely meaningful due to the 

fact that it does not require extra software and hardware elements and is one of the remarkable aspects of this 

study. 

 
Figure 1. Different Type of Electrodes 

2.2. Motion classification using EMG 

In this study, an EMG dataset that can be accessed from the University of Irvine Center for Machine Learning 

and Intelligent Systems’ web-page has been used [21]. The dataset consists of EMG measurements of 36 users 

while performing resting, grasping, flexion, extension, radial deviation, ulnar deviation, and extended palm 

movements acquired using Myo© Armband [22] with the sampling frequency of 1 kHz. In this study, four 

subjects’ data were used. The total number of instances related to these four subjects is 486388 data points.  

Myo is a device that measures electrical activity from muscles using EMG sensors to detect five movements 

made by the upper limbs. It has a 9-axis IMU (Inertial Measurement Unit) sensors. Thus, it can perceive the 

movement, direction and rotation of the arm. The Myo can transmit the data it collects to communicate with 

various peripheral units via Bluetooth connection. The Myo also provides raw EMG data and IMU data, which 

is extremely useful for researchers. The Myo armband is given in Figure 2. 

The EMG measurements were labeled according to the movement which the data relate to. Data related to 

unknown movements were labeled with “0”. The data were classified using 24 different machine learning 

models under 6 main algorithms. These models are given as follows and shown in Table 1. 

2.2.1. Decision tree models 

Tree-based learning models are among the most used supervised learning algorithms. In general, they can be 

adapted to the nature of the problem (classification, regression, or clustering). In addition, decision trees 

algorithms are widely used in classification problems thanks to their easy configuration and comprehensibility 

compared to other classification algorithms [23]. Classification using decision trees is carried out in 2 stages. In 

the first step, the tree is created. Then in the second step, the classification is realized by consecutively feeding 

the data to the tree. Generally, the classification process is mathematically defined as follows: Let 𝐷 =

 {𝑡1, 𝑡2 … 𝑡𝑛} be a database in which each record is represented by 𝑡𝑖 and 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑚} represents a set of 

m classes in which each 𝐶𝑗 is a separate class containing its own records and mathematically defined by  𝐶𝑗 =

 {𝑡𝑖 | = 𝐶𝑗 , 1 ≤ 𝑖 ≤ 𝑛 𝑣𝑒 𝑡𝑖  ∈  𝐷}. The fields for each record in the database are described by {𝐴1, 𝐴2, … 𝐴𝑛}. If 

each record belongs to one of the classes 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑚}, the decision tree is defined as follows:  
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Figure 2.  Myo© Armband 

 

Table 1. Machine learning methods used in the study 

Decision 

Trees 
Discriminant 

Naïve 

Bayes 
SVM KNN Ensemble 

Fine 

Tree 

Linear 

Discriminant 

Gaussian 

Naïve 

Bayes 

Linear 

SVM 

Fine 

KNN 

Boosted 

Trees 

Medium 

Tree 

Quadratic 

Discriminant 

Kernel 

Naïve 

Bayes 

Quadratic 

SVM 

Medium 

KNN 

Bagged 

Trees 

Coarse 

Tree 

  

Cubic 

SVM 

Coarse 

KNN 

Subspace 

KNN 

 

Fine 

Gaussian 

SVM 

Cosine 

KNN 

Subspace 

Discriminant 

Medium 

Gaussian 

SVM 

Cubic 

KNN 

RUSBoosted 

Trees 

Coarse 

Gaussian 

SVM 

Weighted 

KNN 
 

 

Each node is named with the area 𝐴𝑖, nodes between the root node and the leaf are a classification rule and each 

leaf in the tree represents a separate class [24]. The algorithm used in creating a decision tree is important 

because the shape of the tree may change according to the algorithm used and different tree structures can give 

different classification results. 

2.2.2. Discriminant model 

Discriminant Analysis is a linear dimension reduction method that aims to find vectors in the space where 

classes are best decomposed by using class information of data objects [25]. In the discriminant analysis, the 

inter-class scattering matrix SB and the in-class scattering matrix SW are considered in the dimension reduction 

process.  If 𝑥̅ expresses the average value of data objects for a data set with c number of classes, these matrices 

are defined as follows: 

𝑆𝐵 = ∑ (𝑥𝑖̅
𝑐
𝑖=1 − 𝑥𝑖)(𝑥𝑖̅ − 𝑥𝑖)𝑇                                                (1) 

𝑆𝑊 = ∑  𝑐
𝑖=1 ∑ (𝑥𝑖̅

𝑁𝑖
𝑗=1 − 𝑥𝑖)(𝑥𝑖̅ − 𝑥𝑖)𝑇                                            (2)  

In equations (1) and (2), 𝑥̅𝑖  expresses the average value of the ith class. The jth example of ith class is expressed 

by 𝑥𝑖,𝑗 , and 𝑁𝑖 is the number of samples in the ith class.  Then, Sb and Sw matrices are used to solve Eq(3) i.e. 

finding the best 𝑾 directions that maximize 𝑆𝑏
𝑊 and minimize 𝑆𝑤

𝑊. 𝑆𝑏
𝑊 and 𝑆𝑤

𝑊 are the expressions of 𝑆𝑏 and 

𝑆𝑤, respectively, in the reduced space 𝑾. 
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𝑾∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑾 (
𝑾𝑻𝑆𝐵𝑾

𝑾𝑻𝑆𝑊𝑾
)                                                         (3) 

2.2.3. Naïve Bayes model 

Naïve Bayes method is a supervised machine learning method. In this method, the system is trained using 

particular labelled data. Then, the probabilities are being calculated using the remaining test data. This model 

calculates the rate at which the event occurs relative to the next event. We can make a general definition with 

the model given in (4). 

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
                                                             (4) 

where 𝑃(𝑐|𝑥) is the probability of occurrence of 𝑐 when event 𝑥 occurs, 𝑃(𝑥|𝑐) is the probability of occurrence 

of 𝑥 when event 𝑐 occurs, 𝑃(𝑥) is the probability of occurrence of 𝑥, 𝑃(𝑐) is the probability of occurrence of 𝑐. 

2.2.4. SVM (Support Vector Machine) model 

Support vector machines are machine-learning algorithms that work in convex optimization according to the 

principle of structural risk minimization. To classify a data point between two groups in a plane, it divides the 

plane into two by drawing a line between these two groups, and each of the independent elements remain on 

one side of the border.  This process is realized by drawing a separate line to each group, and then they are 

gradually brought closer. As a result, a common boundary line is produced. Linear SVMs classify large data 

using a linear cut plane and react quickly to a large number of structured data. On the other side, quadratic SVM 

models classify by creating a square plane or curve between sets. Cubic SVM models are another type of SVM 

algorithms which perform a classification by finding a hyperplane in a multi-dimensional space that divides 

classes as best as possible [26]. Here, the cubic SVM type classifier is used where the classifier's function 

𝑘(𝑥𝑖 , 𝑥𝑗) is defined as given in equation (5). 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗)3                                                           (5) 

 

2.2.5. KNN (K-Nearest Neighbor) model 

KNN algorithm is also a supervised machine learning method widely used in clustering problems. This 

algorithm connects a data point with the closest neighbours and decides which cluster the element belongs to. 

The number of K - neighbourhoods cannot exceed the number of cluster elements [27]. 

2.2.6. Ensemble model 

In collective classifiers, more than one singular classifier is brought together to enhance the classification 

performance. Algorithms such as decision trees, support vector machines, Naive Bayes method, linear 

separators and artificial neural networks are widely used as single classifiers [28].  

The Bagging (Bootstrapping Aggregation) algorithm is a method that re-train the basic model by deriving new 

data from an existing training data. The purpose of Bagging is to derive new data sets and thus increase the 

overall classification accuracy. 

3. Results and Discussions  

Training results of the 24-different machine-learning models were separately presented for four subjects A, B, 

C, and D. The Table 2 and Table 3 show the comparison of training results based on classification accuracy and 

training duration.  

As can be seen from the Table 2 Decision Trees algorithms including Fine, Medium, and Coarse Tree methods 

has poorly performed in EMG signals classification with average accuracies of 54,66%, 51,77%, and 51,27% 

respectively. Despite these low classification accuracy rates, training times that can be follow from the Table 3 

are short. Discriminant Analysis and Naïve Bayes algorithms can be also considered inappropriate for this 
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type of classification problem due to the low accuracies achieved by their both models. For discriminant analysis 

algorithm, average classification accuracy of linear and quadratic models are % 66,23 and %37,23 respectively. 

Additionally, none of the Naive Bayes models has shown an ability of good classification of such highly noisy 

signals. 

Table 2. Classification Accuracy 

Algorithm Model Type 

Classification Accuracy (%) 
Average 

(%) 
Subjects 

A B C D 

Tree 

Fine Tree 69.5 74.3 7.4444 67.4 54,66 

Medium Tree 65.6 71.5 6.9884 63.0 51,77 

Coarse Tree 65.3 71.2 6.7888 61.8 51,27 

Discriminant 

Linear 

Discriminant 
65.3 71.2 66.6 61.8 66,23 

Quadratic 

Discriminant 
32.2 32.7 40.6 43.4 37,23 

Naïve 

Bayes 

Gaussian Naïve 

Bayes 
31.4 32.3 39.2 42.3 36,30 

Kernel Naïve 

Bayes 
46.6 52.2 49.8 49.8 49,60 

SVM 

Linear SVM 65.3 71.2 66.6 61.8 66,23 

Quadratic SVM 62.4 70.9 67.9 62.5 65,93 

Cubic SVM 23.2 32 33.4 37.2 31,45 

Fine Gaussian 

SVM 
92.5 93.9 93.4 93.6 93,35 

Medium Gauss. 

SVM 
78.2 79.1 84.7 80.3 80,58 

Coarse Gauss. 

SVM 
65.3 71.2 66.7 62.0 66,30 

KNN 

Fine KNN 98.1 98.2 98.3 98.3 98,23 

Medium KNN 94.9 95.3 95.7 95.4 95,33 

Coarse KNN 69.1 73.9 70.5 66.5 70,00 

Cosine KNN 94.5 95.5 95.4 95.1 95,13 

Cubic KNN 94.9 95.3 95.7 95.5 95,35 

Weighted KNN 96.8 98.0 98.4 98.2 97,85 

Ensemble 

Boosted Trees 65.8 71.4 67.4 63.5 67,03 

Bagged Trees 98.3 98.7 98.4 98.8 98,55 

Subspace 

Discriminant 
65.3 71.2 66.6 61.8 66,23 

Subspace KNN 98.1 98.4 98.3 98.5 98,33 

RUSBoosted 

Trees 
20.6 16.3 20.0 22.6 19,88 

 

Fine Gauss SVM model in SVM algorithm has the highest performance in this algorithm with an average 

classification accuracy of 93,35%. The results in Table 2 also reflected the notably good accuracies achieved 

by all the KNN algorithm’ models except Coarse KNN. The Fine, Medium, Cosine, Cubic and Weighted KNN 

models’ average classification accuracies are more than %95.  

The average accuracy of Bagged Trees and Subspace KNN based Ensemble algorithm models is 98,55 and 

98,33. According to these results, Bagged Trees and Subspace KNN based Ensemble algorithm’ models have 

the highest classification accuracy compared to other models of the Ensemble algorithm. The highest 

classification accuracy in the whole models was obtained in the Bagged Trees model of Ensemble algorithm 
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with an average training time of 1561 second. The high accuracy achieved by these sub-methods is ascribed to 

the non-linearity nature of EMG signals. On the other hand, ensemble bagged trees method combines several 

base models. Thus, a single optimal model is produced. The obtained results show that the predictive 

performance of this model is higher than other models.  

 

Table 3. Training Time (sec) 

Algorithm Model Type 

Training Time (sec) Training 

Time 

Average 

Subjects 

A B C D 

Tree 

Fine Tree 8.7851 17.165 7.4444 23.496 14,2 

Medium Tree 7.684 16.676 6.9884 22.17 13,4 

Coarse Tree 7.3639 16.443 6.7888 21.623 13,1 

Discriminant 

Linear 

Discriminant 
6.649 16.144 6.5765 19.983 12,3 

Quadratic 

Discriminant 
8.5145 17.262 7.6008 34.581 17,0 

Naïve 

Bayes 

Gaussian Naïve 

Bayes 
8.6968 18.42 8.2797 33.691 17,3 

Kernel Naïve 

Bayes 
266.01 321.77 172.24 231.91 248,0 

SVM 

Linear SVM 3321.6 2457.8 1835.1 1095 2177,4 

Quadratic SVM 9129.5 10381 7414.7 7227.4 8538,2 

Cubic SVM 7582.4 9661.5 7067.1 6879.2 7797,6 

Fine Gauss. SVM 603.57 723.89 381.56 440.26 537,3 

Medium Gauss. 

SVM 
1003.3 1285.3 608.7 745.62 910,7 

Coarse Gauss. 

SVM 
1534.7 1873.6 952.66 1111 1368 

KNN 

Fine KNN 1540.2 1879.4 957.09 1096.4 1368,3 

Medium KNN 1547.8 1888.8 965.61 1100.1 1375,6 

Coarse KNN 1591.7 1941.2 1007.7 1120.5 1415,3 

Cosine KNN 1661.6 2023.6 1061 1143.4 1472,4 

Cubic KNN 1702 2072.5 1107.3 1151.3 1508,3 

Weighted KNN 1709.9 2082.2 1115.7 1147 1513,7 

Ensemble 

Boosted Trees 1737.7 2108.8 1136.3 1165 1537,0 

Bagged Trees 1770.5 2142.7 1158.5 1173.6 1561,3 

Subspace 

Discriminant 
1782.8 2154.4 1168 1173 1569,6 

Subspace KNN 1816.3 2182.4 1606.5 1189.9 1698,8 

RUSBoosted 

Trees 
1839.5 2199.4 1622.3 1186.1 1711,8 

 

Considering the correct classification and training periods together, it is seen that striking results are obtained. 

Accordingly, when Table 2 and Table 3 are examined together, the training times of Decision Tree, Discriminant 

and Naïve Bayes algorithms, which have low accuracy, are short. The Fine Gaussian model, which has the 

highest average accuracy in the SVM algorithm, has both high performance and fast training with an average 

training time of 537,3 seconds. KNN algorithms also have high accuracy. Average training times in this 

algorithm range from 1368 seconds to 1513,7 seconds. In the Ensemble algorithm, the average training times 

range from 1537 to 1711,8 seconds. The average training time of the Bagged Trees model, which has the highest 

classification accuracy among all models, is 1513 seconds. 
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In multi categorical classification problems, accuracy can be misleading and, in some cases, does not reflect the 

real performance of a classification algorithm. To verify the obtained classification accuracy, confusion matrices 

related to subject A are given as an example for some algorithms between Figure 1 to Figure 6. It is clear that 

the results in the confusion matrices and the results in Table 2 are consistent. The confusion matrices show with 

details the ability of each algorithm to perform the classification of EMG signals into 7 different movements. 

 
Figure 1. Decision Tree-Fine Tree Confusion Matrix for Subject A 

 
Figure 2. Discriminant-Quadratic Discriminant Confusion Matrix for Subject A 
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Figure 3. Naïve Bayes - Kernel Confusion Matrix for Subject A 

 

 

 
Figure 4. SVM-Fine Gaussian Confusion for Subject A 
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Figure 5. KNN-Fine KNN Confusion Matrix for Subject A 

 

 

 
Figure 6. Ensemble - Subspace KNN Confusion Matrix for Subject A 
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4. Conclusions 

In this study, 8 channel EMG signals from 4 subjects were used to classify 7 different wrist and static hand 

gestures. 24 different models of 6 basic machine learning algorithms were used for classification. The 

classification results obtained were compared with the classification accuracy and training time parameters. 

According to the test results, the Ensemble algorithm Bagged Trees model has been shown to have the highest 

classification performance with an average classification accuracy of 98.55% among these models. The 

Ensemble Bagged Trees classified the raw EMG data with a very high performance. This reveals the 

classification capacity of Ensemble models, which have a structure consisting of a combination of other basic 

models. 

In the next study, the algorithms that have the highest performance with the obtained results will be applied to 

biomechatronic systems and these systems will be tested with real patients. 
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