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ABSTRACT   

The study has examined the estimation of Frechet distribution parameters with the shape parameter (α) and 
the scale parameter (β). Two estimation methods are used based on the maximum likelihood and Bayes 

methods. The life time data are fuzzy numbers. These estimations of parameters are employed to estimate 

the fuzzy reliability function of the distribution and to select the best estimate of the fuzzy reliability function 

by comparing the mean squares error (MSE) and the average absolute proportional error (MAPE). The results 
of simulation showed that the fuzziness is better than the real for all sample sizes and the fuzzy reliability at 

the estimates of the Bayes estimated is better than the maximum likelihood method. It gives the lowest 

average MSE and MAPE until to arrive at a minimum at sample size of n = 500.   
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1. Introduction 

In the real world, we encounter sets of things that do not have the exact membership of their elements. So, these 

sets do not form sets in the usual mathematical sense of these terms. For example, if we have a class of students 
at a particular university, we can take a term representing "students who have a driver's license". It is natural 

that each element (student) in that set either has a license or does not. If the student has a driving license and 

the value is zero, the student cannot have a driving license. But, if we take the subset that is "students who drive 
very well", each student will have a certain degree of quality of driving and an element in the set is distinguished 

by a membership function that gives values between zero and one and here partial affiliation is allowed. 

In the other hand, reliability is one of the most important and effective techniques at present to evaluate the 
work of systems or units. It is the function that gives the probability of any unit or vehicle working for a certain 

period of time without failure. Many methods and models in the theory of reliability in its conventional form 

assume that all the parameters of the life-time probability function are crisp. In the real world applications, it is 

necessary to generalize the classical statistical estimation methods of the real numbers into fuzzy numbers. This 
is because of the parameters of probability distribution sometimes cannot be accurately recorded due to errors 

of experience, personal judgment, estimation, or some unexpected situations. Then, the parameters in the life 

distributions are fuzzy. So, the system of reliability may become difficult to deal with the function of traditional 
reliability. Consequently, we can deal with a more comprehensive term than the traditional term of reliability. 

This is defined as the fuzzy probability of continuity of work of the vehicle or unit successfully for a certain 

period of time and to the degree of belonging determined according to the function of a certain membership.  
The fuzzy logic began to mature by Zadeh in 1965, when he used the term "fuzzy variables" in terms of 

approximate or inaccurate linguistic expressions and language [1]. This is the first to establish the foundations 

of the theory of fuzzy sets theory. The fuzzy set is defined as a set of objects or elements that have continuous 

degrees of membership. They are characterized by the function of membership to each object in the set. The 
degree of membership is often between zero and one [2], [3]. Cheng in 1996, proposed an abbreviation of the 

graphical evaluation and review technique. This method was used to calculate the fuzzy reliability of warplanes 
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for several successful flight attempts. Wu in 2004, estimated fuzzy reliability using the Bayes approach in the 
fuzzy environment by assuming a fuzzy treatment of fuzzy variables with previous fuzzy distributions [4]. The 

traditional Bayes estimation method was used to create the fuzzy estimator of reliability by including the theory 

of resolution identity and determine the degree of membership to any Bayes estimate of reliability. Huang and 

Zuo in 2006, analyzed basis reliability of fuzzy life data. Bayes method was used to estimate fuzzy reliability 
based on the size of a small sample by assuming a new method to determine the function of membership 

estimation and the reliability function of multi-parameters life distributions [5]. Abbas and Yincai in 2012, 

estimated the scale parameter for Frechet distribution with a parameter of a given shape. They used the 
maximum likelihood, weighted moments and the Bayes methods for the prior Jeffery distribution. The quadratic 

loss function, El-Sayyad loss function, and the linex loss function was as well done using different sample sizes 

based on the MSE error standard [6]. They concluded that the method of maximum likelihood is better than the 
Bayes method in terms of Bayes when increasing the value of α. Pak and Saraj in 2013, estimated the reliability 

of Rayleigh distribution distributions based on fuzzy life data by using the Bayes method to estimate the 

parameter and reliability function of distributions from fuzzy life data. Because the Bayes estimations cannot 

be given in clear formats, the researchers used approximations such as Lindely, Tierney and Kandane 
approximations. The results were showed that the approximations of Tierney and Kandane's give accurate 

estimates of the parameters [7]. So, it is recommended to use it to find Bayes estimates as well as the reliability 

of the Rayleigh distribution. Pak, Ali and Saraj have used maximum likelihood, Bayes estimation and moment 
estimations. The observations are in the form of fuzzy data in the Weibull distribution by using the Newton 

Rafson method and the maximization expectation method. The aim of work was to find the estimates of the 

maximum likelihood estimation and the approximation of Tierney and Kandane's approximation for Bayes 
estimates based on a quadratic loss function and a repetitive method for finding the inverse estimation [8]. The 

Monte Carlo simulation was employed when the sample size is small and medium. Bayes estimator is better 

than the estimator of the maximum likelihood and then the moment's method comes after them. If the sample 

size is large, the three methods will give the same estimates. Pak in 2016, used maximum likelihood estimation, 
Bayes and moments estimations to estimate the shape parameter for log-normal distribution when the 

observations are in a fuzzy data format. He has used the Newton Rafson method to find the maximum likelihood 

estimates and the Monte-Carlo Markov series method to find Bayes estimates for different types of prior 
distributions [9]. The Monte Carlo simulation was used to compare among methods. Bayes estimates based on 

non- informative prior distribution as well as estimations of the maximum likelihood estimation have yielded 

similar estimation results. In the case of the previously fully informative Bayes estimates, the least mean error 

squares are present.. The average error and Bayes estimators will decrease significantly if the sample size 
increases. Nathier and Mohammed in 2017, were estimated the parameters of the reliability for fuzzy 

exponential distribution with two parameters [10]. The λ parameter was estimated by the method of moments 

and the maximum likelihood [11]. They estimated the fuzzy reliability function and compared the results using 
the MSE. They found that the maximal likelihood estimator is the best and the fuzzy reliability is better when 

the estimator is for maximum likelihood at the fuzzy number k = 0.3. They concluded that the fuzzy estimate 

of reliability is better than the conventional estimate. In the same year, Pak used Lindley distribution with one 
parameter when the data is available in a fuzzy data format using the maximum likelihood estimation and Bayes 

Estimation by EM equations to determine the MLE of the parameter and establish confidence limits using the 

asymptotic normality of the maximum potential estimator [12]. Laplace, known as the Monroe Monte Carlo 

chains was created to find a Bayes estimator for the parameter. A previous confidence period was also obtained 
for the unknown parameter. Through the Monte Carlo study, the researcher concluded that Bayes estimates 

based on prior non-informative as well as estimates of the maximum likelihood have yielded similar estimation 

results. In the case of the prior information, the estimate of Bayes has the lowest average error squares.  
 

2. Materials and method 

Frechet distribution is one of the most recent probability distributions of lifetime models. This distribution was 

provided by Maurice Frechet. It has extensive applications in the modeling and analysis of many events such as 

earthquakes, earthquakes, floods, rainfalls, wind speeds, life tests, and sea currents. Statistical behavior of 

material properties can be used in engineering fields as well as in infant mortality modeling and modeling of 
special events and maintenance periods. The Frechet distribution is used to model failure rates that are 

commonly used in reliability biological studies, optical signal analysis and error modeling. 
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Drapella and Kollia were suggested an inverse named a reciprocal of Weibull on the distribution of Frechet 
distribution [13]. 

If x is a random variable with a Weibull distribution, then y = 1 / x is the inverse of the values of the random 

variable x. It has a probability distribution of the following probability density: 

𝑓(𝑥, 𝛼, 𝛽) = 𝛼𝛽𝛼𝑥−(𝛼+1)exp⁡(− (
𝛽

𝑥
)
𝛼

)   ;  𝑥 > 0                                                              (1) 

Here, α > 0 is the shape parameter and  𝛽 > 0 is for  scale Parameter 

The cumulative distribution function is given as follows [16]: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑢)𝑑𝑢 =
𝑥

0
exp⁡(− (

𝛽

𝑥
)
𝛼

) ;  𝑥 > 0                                                     (2) 

The reliability function is given as follows: 

𝑅(𝑡) = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡 = 1 −
∞

𝑡
exp⁡(− (

𝛽

𝑥
)
𝛼

)                                                          (3)                           

The hazards function can determined by: 

𝐻(𝑡) = 𝛼𝛽𝛼𝑡−(𝛼+1)exp⁡(− (
𝛽

𝑡
)
𝛼

)(1 − exp (−(
𝛽

𝑡
)
𝛼
))−1                                                    (4)                 

The k-rank is about the point of origin K 'th with moment about origin: 

EX𝑘 = ∫ X𝑘𝑓(𝑥)𝑑𝑥 = 𝛽𝑘
∞

0
Г(1−

𝑘

𝛼
) ; k=1,2,3,…                                                         (5)                                  

Mean and variance are computed by: 

µ𝑥 = 𝛽Г(1−
1

𝛼
)                                                                                        (6)                                                                         

𝜎𝑥
2 = 𝛽2[Г(1− 

2

𝛼
) − Г2(1 −

1

𝛼
 )]                                                                          (7) 

 

2.1. Basic concepts in the theory of fuzzy sets 

The type of data used in estimating the parameters and reliability of probability distribution is of great 
importance in the accuracy of the results that we will obtain. Therefore, the data type must be specified. One of 

these types of data is the fuzzy data which is one of the new and important trends of statistics because many 

phenomena in our real world do not have definite boundaries. They as well do not have accuracy in its 

measurements. So, we will touch on some basic concepts and important in the theory of fuzzy sets [14]. 
2.2. Fuzzy sets 

For ambiguous set, each element in the fuzzy set has a certain degree of belonging. The fuzzy set was 

characterized by a membership function that assigns to each element of the set with a degree of membership in 
the interval [0,1]. The element or object is allowed to belong to a partial membership [15]. 

Let X be universe of discourse, then the fuzzy subset  𝐴̃  characterized by membership function µ𝐴(𝑥) which 

produces values between [0, 1] for all x values in the fuzzy sample space X: 

𝐴̃ = {(𝑥𝑖 , µ𝐴(𝑥𝑖)), 𝑥 ∈ ⁡X, 𝑖 = 1,2,3, ……𝑛, 𝑜 < µ𝐴(𝑥) < 1}                                                    (8) 

 

 

 

 
 

 

 
 

 

 

 
 

 

Figure 1. Graphical representation for fuzzy set 
2.3. Membership function  

The concept of the membership function is the most important in the theory of fuzzy sets. It is used to represent 

different types of fuzzy sets. A function produces values within the interval [0,1] to reflect the degree of 
membership of each element in the total set to the fuzzy set. In other word, it is the map that determines the 

degree of correctness (degree of verification of membership) for the belonging of each element in the overall 
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set to the fuzzy set. It is a function with a non-negative value and the basic condition for this function is to have 
a range between zero and one [16, 17]. 

 

Fuzzy numbers are used to describe uncertainty which are often triangular, trapezoidal, or any other forms [18, 

19]. The fuzzy number is a fuzzy set under the following conditions: 
1. Convex and normalized. 

2. The μ_a belonging function is semi-continuous from the top. 

3. The α-specific level group is for each α ε [0,1]. 
4. Defined on the set of real numbers R 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The fuzzy number 

 

 

 

 

 

 

2.4. Triangular fuzzy number 

It is known as 𝑎1, 𝑎2, 𝑎3, 𝑎1 < 𝑎2 < 𝑎3. It is triangle within the interval[𝑎1, 𝑎3]. Its head is at⁡⁡𝑥 = 𝑎2, and it 

can be written as ⁡𝑁̃ = (𝑎1/𝑎2/𝑎3) and its membership function is:  

                                                                       ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑥−𝒂𝟏

𝒂𝟐−𝒂𝟏
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝒂𝟏 ≤ 𝑥 ≤ 𝒂𝟐                                                                             

µ𝑁̃(𝑥) =⁡⁡⁡⁡⁡⁡⁡⁡⁡   
𝒂𝟑−𝑥

𝒂𝟑−𝒂𝟐
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝒂𝟐 ≤ 𝑥 ≤ 𝒂𝟑                                                            (9) 

                                                                                               0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  
2.5. Trapezoidal fuzzy number  

It is known as 𝑎1, 𝑎2, 𝑎3, 𝑎3, , 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4, and triangle the interval [𝑎1, 𝑎4]. Its head is at [𝑎2, 𝑎3], and 

it can be written as 𝑀̃ = (𝑎1/𝑎2, 𝑎3/𝑎4), and its membership function is [20]:  

 

                                                                       ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
𝑥−𝒂𝟏

𝒂𝟐−𝒂𝟏
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝒂𝟏 ≤ 𝑥 ≤ 𝒂𝟐                                                                                              

        µ𝑀̃(𝑥) = ⁡⁡⁡⁡⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝒂𝟐 ≤ 𝑥 ≤ 𝒂𝟑                                                             (10) 

                                                                                         
𝒂𝟒−𝑥

𝒂𝟒−𝒂𝟑
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝒂𝟑 ≤ 𝑥 ≤ 𝒂𝟒 

                                                                                              0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤 

2.6. Fuzzy sample space  

It is fuzzy parts x̃ = (x̃1, ……… . , x̃n) from = (X1, ……… . . , Xn) . Fuzzy sets for X with membership functions 

has Borel Measure, and satisfy the orthogonally constraint [8, 17]: 
∑ µ𝑥(𝑥) = 1𝒙̃∈𝑿                                                                               (11) 

Also, it is termed as fuzzy information system (FIS). 

2.7. Fuzzy event  

If X = (X1 , ……… . . , Xn) in ⁡space  and Bx is smallest⁡Borel⁡field in X. Then, the fuzzy event is fuzzy subset 

Ã⁡ in which its membership has⁡measurable⁡Borel⁡field⁡⁡[17]. 
2.8. Fuzzy reliability  
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Reliability was defined as the probability that the unit or device will remain valid after a period of time (t) on 
use. If T is a continuous random variable, T> 0, the reliability function is [7, 18, 20]: 

𝑅𝑇(𝑡) = 𝑃(𝑇 ≥ 𝑡) = ∫ 𝑓𝑇
∞

𝑡
(𝑥)𝑑𝑥 = 1 − ∫ 𝑓𝑇

𝑡

0
(𝑥)𝑑𝑥 = 1 − 𝐹𝑇(𝑡)                                    (12) 

Its properties are:  

 

• 𝑅(0) = 𝑝(𝑇 < ⁡0) = 1 

• 𝑅(∞) = 1 

• 0 ≤ ⁡𝑅(𝑡) ≤ 1 

• If 𝑡1 <⁡ 𝑡2then,  𝑅(𝑡1) ≥ 𝑅(𝑡2) 
Now, we can say that the fuzzy reliability represents the probability of the unit performing the work required. 
It is with varying degrees of success for a specified period of time under normal conditions and symbolized by 

R̃, which is a function in the fuzzy set Ã  : 

𝑅̃ = µ𝐴𝑖(𝑅). 𝑅, While 𝑅(𝑡) = ∫ 𝑓
∞

𝑡
(𝑡)𝑑𝑡 then,⁡⁡⁡⁡𝑅̃ = µ𝐴𝑖(𝑅). ∫ 𝑓

∞

𝑡
(𝑡)𝑑𝑡,⁡𝑅(𝑡) = 1 − exp⁡(− (

𝛽

𝑥
)
𝛼

) 

We will assume that the values of the random variable T̃ are fuzzy number,⁡𝑡̃ = {[0,∞), µ𝑡𝑖}; 𝑘̃𝑡 𝑡̃ = و    𝑡 ∈ 𝑇 

So, the fuzziness is a real triangular fuzzy number, and:  

                                                                     ⁡⁡
𝑘−𝑘𝑚𝑖𝑛

1−𝑘𝑚𝑖𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 ∈ (𝑘𝑚𝑖𝑛 , 1) 

µ𝑘̃(𝑘) = ⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑘−𝑘𝑚𝑎𝑥

1−𝑘𝑚𝑎𝑥
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 ∈ (1, 𝑘𝑚𝑎𝑥)                                                                          (13) 

                                                                            0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  

 

Where, 0 < 𝑘𝑚𝑖𝑛 ≤1≤𝑘𝑚𝑎𝑥 . 

 

If the random variable T has a traditional fractional distribution with 𝐹𝑟𝑒𝑐ℎ𝑒𝑡(𝛼, 𝛽),⁡⁡the corresponding  𝑇̃⁡ of 

random variable will have 𝑭𝒓𝒆𝒄𝒉𝒆𝒕̃ (𝜶̃, 𝜷̃)  variable. 

For each 𝑡 ∈ [0,∞),⁡the Cumulative Fuzzy Distribution Function is: 

𝑭̃(𝒕̃) ⁡= 𝐞𝐱𝐩⁡(−(
𝜷̂

𝒌̃𝒕
)
𝜶̂

)   ;  𝑡̃ > 0                                                                            (14) 

 
Then, the fuzzy reliability function is:  

𝑹̃(𝒕) = 𝟏 − 𝒆𝒙𝒑⁡(−(
𝜷̂

𝒌̃𝒕
)
𝜶̂

)                                                                                 (15)                                                                                                                      

 

2.9. Fuzzy maximum likelihood method  

Let x = (x1 , ……… . , xn) that is based on Frechet⁡distribution and let X = (X1 , …… , Xn) that is random vector 

representing the sample space. The likelihood function for complete data (not fuzzy) is [8, 7, 11, 12, 21]:  

𝑓(𝛼, 𝛽; 𝑥) = 𝛼𝑛𝛽𝑛𝛼∏ 𝑥−(𝛼+1)𝑛
𝑖=1 exp (−∑ (

𝛽

𝑥
)𝑛

𝑖=1

𝛼
)                                                     (16) 

Where X is clearly visible and available with full information about crisp vector. Now, consider the problem 

that x is not clearly and accurately seen and partially available in a fuzzy subset form with a µÃ(x)⁡having a 

Borel measurement. The fuzzy set x can express the partial belonging of X from the X random vector. The 

function µÃ   is a probability distribution that explains the limitations of that partial observation x̃. The fuzzy set 

x can be described by two steps: 

• x is drawn from X. 

• The vector x viewer after such partial information is encoded in µÃ(x). 

The information on x can be represented by the following probability distribution: 

µ𝑥(𝑥) = µ𝑥1(𝑥)𝘹……… . . 𝘹µ𝑥𝑛(𝑥)                                                                  (17)                                                                                                                                                      

If x is given and its function is assumed to have a Borel measurement. We can calculate its probability according 
to the definition of fuzzy probability. The maximum likelihood function of fuzzy data can be obtained as 

follows: 

𝐿∗ = 𝑙𝑜𝑔⁡(𝐿0(𝛼, 𝛽; 𝑥̃)) = 𝑛𝑙𝑜𝑔(𝛼) + 𝑛𝛼 𝑙𝑜𝑔(𝛽) + ∑ 𝑙𝑜𝑔⁡(∫ 𝑥−(𝛼+1)𝑒𝑥𝑝⁡(− (
𝛽

𝑥
)
𝛼

)µ𝑥̃𝑖(𝑥)𝑑𝑥
∞

0
𝑛
𝑖=1 )             (18)                               
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Estimates of the ML of α and β can be obtained by maximizing L* and partial derivation for α and β with 
equivalence of of zero as follows: 

=
𝑛

𝛼̂
+ 𝑛𝑙𝑜𝑔(𝛽̂) − [∑

∫ [(𝑥−(𝛼̂+1) .𝑙𝑛(𝑥)+𝑥−2𝛼̂−1(𝛽̂)
𝛼̂
.𝑙𝑛(

𝛽̂

𝑥
)) )𝑒𝑥𝑝(−(

𝛽̂

𝑥
)
𝛼̂

).µ𝑥̃𝑖
(𝑥)𝑑𝑥.]

∞
0

∫ 𝑥−(𝛼̂+1) 𝑒𝑥𝑝(−(
𝛽̂

𝑥
)
𝛼̂

)µ𝑥̃𝑖
(𝑥)𝑑𝑥

∞
0

𝑛
𝑖=1 ] = 0                          (19)                 

𝜕𝐿∗

𝜕𝛽
=

𝑛𝛼̂

𝛽̂
−∑

∫ 𝑥−𝛼−1(
𝛽̂

𝑥
)
𝛼̂
𝛼̂

𝛽̂
𝑒𝑥𝑝(−(

𝛽̂

𝑥
)
𝛼̂

)µ𝑥̃𝑖
(𝑥)𝑑𝑥

∞
0

∫ 𝑥−(𝛼̂+1) 𝑒𝑥𝑝(−(
𝛽̂

𝑥
)
𝛼̂

)µ𝑥̃𝑖
(𝑥)𝑑𝑥

∞
0

= 0𝑛
𝑖=1                                                 (20)                                                                    

We can see from the formulas (19) and (20) that there is no closed formula for the solution. So, we will look for 

frequently numerical methods to obtain the ML via Newton-Raphson method to obtain the estimates of the 

⁡α̂fmle⁡and⁡ ⁡β̂fmle as following:  

Let θ = (α, β)T⁡ represent the parameter vector, then at step (h + 1) from iterative steps, we obtain on 
parameters as following:  

𝜃ℎ+1 = 𝜃ℎ − [
𝜕2𝐿∗(𝛼,𝛽;𝑥)

𝜕𝜃𝜕𝜃𝑇
⃒𝜃=𝜃ℎ]

−1

. [
𝜕𝐿∗(𝛼,𝛽;𝑥)

𝜕𝜃
⃒𝜃=𝜃ℎ]                                                (21) 

𝜕𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝜃
=

(

 

𝜕𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝛼
𝜕𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝛽 )

  

𝜕2𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝜃𝜕𝜃𝑇
=

(

 
 

𝜕𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝛼2
𝜕𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝛼𝜕𝛽

𝜕𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝛼𝜕𝛽

𝜕𝐿∗(𝛼, 𝛽; 𝑥̃)

𝜕𝛽2 )

 
 

 

 
𝜕𝐿∗2

𝜕𝛼2
=

𝑛

𝛼2
−∑ (

1

(∫ 𝑥−(𝛼+1) 𝑒𝑥𝑝(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥
∞

0
)
(𝑛

𝑖=1 ∫ ln(𝑥)2
∞

𝑜
(
𝛽

𝑥
)
𝛼
+ 2 ln(𝑥) ln (

𝛽

𝑥
) − 𝑙𝑛 (

𝛽

𝑥
)
2
+

(
𝛽

𝑥
)
𝛼
𝑙𝑛 (

𝛽

𝑥
)
2
)⁡. (⁡𝑥−𝛼−1 (

𝛽

𝑥
)
𝛼
𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖(𝑥)𝑑𝑥) +

(∫ ln(𝑥)+(
𝛽

𝑥
)
𝛼
𝑙𝑛(

𝛽

𝑥
)).(𝑥−𝛼−1 𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥)
2

∞

0

(∫ 𝑥−(𝛼+1) 𝑒𝑥𝑝(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥
∞

0
)
2 ⁡                                                                                                               

(22) 

 

𝜕𝐿∗2

𝜕𝛽2
= −

𝑛𝛼

𝛽2
− ∑

(
𝛼2

𝛽2
−
𝛼

𝛽2
−
𝛼2

𝛽2
(
𝛽

𝑥
)
𝛼
).(⁡𝑥−𝛼−1 𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
))µ𝑥̃𝑖

(𝑥)𝑑𝑥

∫ 𝑥−(𝛼+1) 𝑒𝑥𝑝(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥
∞
0

+
∫ 𝑥−𝛼−1(

𝛽

𝑥
)
𝛼𝛼

𝛽
𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥
∞
0

(∫ 𝑥−(𝛼+1) 𝑒𝑥𝑝(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥
∞

0
)
2

𝑛
𝑖=1 )              (23) 

 

𝜕𝐿∗2

𝜕𝛼𝜕𝛽
= −

𝑛

𝛽
−∑ (

− ln(𝑥)
𝛼

𝛽
+
𝛼

𝛽
+
1

𝛽
−(

𝛽

𝑥
)
𝛼
ln(𝑥)

𝛼

𝛽
).(𝑥−𝛼−1 𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
))µ𝑥̃𝑖

(𝑥)𝑑𝑥

(∫ 𝑥−(𝛼+1) 𝑒𝑥𝑝(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥)
∞
0

+𝑛
𝑖=1

∫ 𝑥−𝛼−1 ln(𝑥) 𝑒𝑥𝑝(−(
𝛽

𝑥
)
𝛼
)+𝑥−𝛼−1(

𝛽

𝑥
)
𝛼
𝑙𝑛(

𝛽

𝑥
) 𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥.∫ 𝑥−𝛼−1(
𝛽

𝑥
)
𝛼𝛼

𝛽
𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥
∞
0

∞
0

(∫ 𝑥−(𝛼+1) 𝑒𝑥𝑝(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥
∞

0
)
2 )⁡⁡                  (24) 

We continue with replication until ⃒⃒θh+1 − θh⃒⃒  is less than ε⁡ , wher⁡ε > 0 , a very small positive number.  

2.10. Fuzzy Bays method   

Bayes theorem assumes that the unknown parameters are random variables and that prior information is given 
in the form of a probability distribution known as the prior probability function. This information is identified 

from previous data and experiments of the theory that governs the phenomenon. The Bayes theory also depends 

on the current information of the sample. It can represent the likelihoods function of the observations by 
combining the probability density function of the parameters with the maximum likelihood function of the 

current observations. Accordingly, we can obtain the posterior probability distribution and under a quadratic 

loss function, we derive the Bayes estimates [4, 5, 9, 17]. 

Let x = (x1 , ……… . , xn) that is based on Frechet distribution and let X = (X1 , …… , Xn) that is random vector 
represent the sample space. The likelihood function for complete non-fuzzy data is:  
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𝑓(𝛼, 𝛽; 𝑥) = 𝛼𝑛𝛽𝑛𝛼∏ 𝑥−(𝛼+1)𝑛
𝑖=1 exp (−∑ (

𝛽

𝑥
)𝑛

𝑖=1

𝛼
)                                                    (25)                                                               

Where X is clearly visible and available with full information about crisp vector. 

Now consider the problem that x is not clearly and accurately seen and partially available in a fuzzy subset form 

with a µÃ(x)⁡have a Borel measurement. Let π1(α) and π2(β) represent the priors distribution. We assumed that  

as Gamma distribution as following:  

𝜋1(𝛼) =
𝑑𝑐

Г𝑐
𝛼𝑐−1 exp(−𝛼𝑑)⁡⁡                                                                          (26) 

𝜋2(𝛽) =
𝑏𝑎

Г𝑎
𝛽𝑎−1 exp(−𝛽𝑏)                                                                            (27) 

Where α~gamma(c, d), β~gamma(a, b). 

𝜋1(𝛼, 𝛽 𝑥̃) =
𝜋1(𝛼).𝜋2(𝛽).ℓ(𝛼,𝛽;𝑥)

∬𝜋1(𝛼).𝜋2(𝛽).ℓ(𝛼,𝛽;𝑥)𝑑𝛼𝑑𝛽
                                                                  (28)                                                              

       ℓ(𝛼, 𝛽; 𝑥̃) = 𝛼(𝑛)𝛽(𝛼𝑛) exp(−𝛼𝑑) exp(−𝛽𝑏)∏ ∫𝑥−(𝛼+1) exp (−(
𝛽

𝑥
)
𝛼
)µ𝑥𝑖(𝑥)𝑑𝑥⁡⁡⁡⁡⁡⁡⁡⁡

𝑛
𝑖=1                   (29) 

ℓ(𝛼, 𝛽; 𝑥̃) = 𝛼𝑛𝛽𝑛𝛼∏ ∫ 𝑥−(𝛼+1)exp⁡ (− (
𝛽

𝑥
)
𝛼
)

∞

0
𝜇𝑥𝑖𝑑𝑥

𝑛
𝑖=1                                               (30) 

The posterior is:  

𝑓(𝜃 ∕ 𝑥) =
𝑘(𝜃,𝑥)

∫ 𝑘(𝜃,𝑥)
                                                                                    (31)                                                                                                                                       

𝑓(𝛼, 𝛽 ∕ 𝑥̃) =
𝛼(𝑛+𝑐−1)𝛽(𝛼𝑛+𝑎−1) exp(−𝛼𝑑) exp(−𝛽𝑏)⁡∏ ∫𝑥−(𝛼+1) exp(−(

𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥𝑛
𝑖=1

∫∫𝛼(𝑛+𝑐−1)𝛽(𝛼𝑛+𝑎−1) exp(−𝛼𝑑) exp(−𝛽𝑏)⁡∏ ∫𝑥−(𝛼+1) exp(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥𝑛
𝑖=1 𝑑𝛽𝑑𝛼

⁡⁡                        (32) 

Under loss function g(α, β), we get: 

𝐸(𝑔(𝛼, 𝛽 𝑥)) =
∫∫𝑔(𝛼,𝛽)𝛼(𝑛+𝑐−1)𝛽(𝛼𝑛+𝑎−1)exp(−𝛼𝑑) exp(−𝛽𝑏)⁡∏ ∫𝑥−(𝛼+1)exp(−(

𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥𝑛
𝑖=1 𝑑𝛽𝑑𝛼

∫∫𝛼(𝑛+𝑐−1)𝛽(𝛼𝑛+𝑎−1) exp(−𝛼𝑑)exp(−𝛽𝑏)⁡∏ ∫𝑥−(𝛼+1) exp(−(
𝛽

𝑥
)
𝛼
)µ𝑥̃𝑖

(𝑥)𝑑𝑥𝑛
𝑖=1 𝑑𝛽𝑑𝛼

⁡⁡⁡𝐸(𝑔(𝛼,𝛽 𝑥̃)) =

∫∫𝑔(𝛼,𝛽)𝑒𝑛𝑄𝑑𝛽𝑑𝛼

∫∫ 𝑒𝑛𝑄𝑑𝛽𝑑𝛼
⁡⁡ (33)                                                                         

𝑄(𝛼, 𝛽) = 𝑙𝑛(𝜋1(𝛼)𝜋2(𝛽)ℓ(𝛼, 𝛽; 𝑥̃) ≡ 𝜌(𝛼; 𝛽) + ℒ(𝛼; 𝛽)                                                   (34) 

𝐸(𝑔(𝛼, 𝛽 𝑥̃)) =
∫∫ ⁡𝑒𝑛𝐹̅𝑑𝛽𝑑𝛼

∫∫ 𝑒𝑛𝐹𝑑𝛽𝑑𝛼
                                                                             (35)                                                                                                    

We will use Tierney and Kandane's approximation algorithm to obtain ( α) ̂_bays  and β ̂_bays by assuming 

initial values for  (ά, α, β)⁡  as following:  

𝑔̂(𝛼, 𝛽) = (
H̅

𝐻
)
1/2

𝑒𝑥𝑝 (𝑛 (𝐹̅(𝛼́, 𝛽́) − 𝐹(𝛼, 𝛽)))                                                         (36)                                                                          

𝐹̅(𝛼́, 𝛽́) ⁡=
(𝑙𝑛(𝛼́)+𝑙𝑛(𝛼́𝑛+𝑐−1𝛽𝑛𝛼+𝑎−1𝑒𝑥𝑝(−𝛼́𝑑)⁡𝑒𝑥𝑝(−𝛽𝑏)∏∫𝑥−(𝛼́+1)𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
))µ𝑥̃𝑖

(𝑥)𝑑𝑥)

𝑛
                                      (37) 

𝐹(𝛼́, 𝛽) =
(𝑙𝑛(𝛼𝑛+𝑐−1𝛽𝑛𝛼+𝑎−1𝑒𝑥𝑝(−𝛼𝑑)⁡𝑒𝑥𝑝(−𝛽𝑏)∏ ∫𝑥−(𝛼+1)𝑒𝑥𝑝(−(

𝛽

𝑥
)
𝛼
))µ𝑥̃𝑖

(𝑥)𝑑𝑥)

𝑛
                                          (38) 

2.11. Simulation experiments 

The Monte-Carlo simulation method was used to compare the estimation methods of the reliability function for 

Frechet distribution and to illustrate the effect of the estimation method of the reliability function for the 

following: 

1.  Change in sample size. 
2. Change in the relationship between the α shape parameter and the parameter β. 

3. Choosing sample sizes (10,50,100,150,500) 

4. Choosing Experimental values for α and β as following:  

Table 1. The values of α and β 

𝛽 𝛼 𝛽 𝛼 𝛽 𝛼 Parameter 

2.0 2.0 0.75 0.75 0.50 0.50 
Value 

  3.00 2.00 1.00 0.50 

2.10.1 Data generating 

The generation of a variable follows a uniform distribution u ~ U (0,1) using the rand term. Generate fuzzy data 

following the Frechet distribution by inverse transformation method using the following formula: 
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𝑡𝑖 = 𝛽 (𝐿𝑛 (
1

𝑢
))

−⁡⁡
1

𝛼
⁡⁡⁡ ; ⁡𝑖 = 1,2, …… , 𝑛                                                                 (39)                                              

The sample is represented by vector t of Frechet distribution. The t-sample vector is converted to fuzzy using 

the fuzzy hypothetical information system as in Figure. 3 corresponding to the following membership functions: 

 

    ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 ≤ 0.05 

µ𝑡1(𝑡) = ⁡⁡⁡⁡⁡⁡⁡⁡⁡
0.25−𝑡

0.2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.05 ≤ 𝑡 ≤ 0.25   

0 𝑜.𝑤  

    ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑡−0.05

0.2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.05 ≤ 𝑡 ≤ 0.25 

 

µ𝑡2(𝑡) = ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0.5−𝑡

0.25
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.25 ≤ 𝑡 ≤ 0.5    

0 𝑜.𝑤   

     ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑡−0.25

0.25
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.25 ≤ 𝑡 ≤ 0.5 

µ𝑡3(𝑡) =    ⁡⁡
0.75−𝑡

0.25
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.5 ≤ 𝑡 ≤ 0.75 

                   0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  

 

    ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑡−0.5

0.25
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.5 ≤ 𝑡 ≤ 0.75 

µ𝑡4(𝑡) = ⁡⁡⁡⁡⁡⁡⁡⁡
1−𝑡

0.25
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.75 ≤ 𝑡 ≤ 1    

                 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  

 

     ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑡−0.75

0.25
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0.75 ≤ 𝑡 ≤ 1 

µ𝑡5(𝑡) =⁡⁡⁡⁡⁡⁡  ⁡⁡
1.5−𝑡

0.5
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1 ≤ 𝑡 ≤ 1.5 

                 ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  

  

   ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑡−1

0.5
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1 ≤ 𝑡 ≤ 1.5 

µ𝑡6(𝑡) = ⁡⁡⁡⁡⁡
2 − 𝑡

0.5
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1.5 ≤ 𝑡 ≤ 2 

                     0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  

 

   ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑡−1.5

0.5
⁡⁡⁡⁡⁡⁡⁡⁡1 ≤ 𝑡 ≤ 1.5 

µ𝑡7(𝑡) = ⁡⁡⁡⁡⁡⁡⁡3 − 𝑡⁡⁡⁡⁡⁡⁡⁡2 ≤ 𝑡 ≤ 3 

                 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  

 
 

   ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 − 2⁡⁡⁡⁡⁡⁡⁡⁡2 ≤ 𝑡 ≤ 3 

µ𝑡8(𝑡) = ⁡⁡⁡⁡⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 ≥3 

                      0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤  

 

 

 

 

 
 

 

 

 

 Figure 3. The Fuzzy Hypothetical information system used in simulating simulation data 
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The estimates of α and β for the fuzzy sample were obtained using NR method in the maximum likelihood 

method. In Bayes method, we used a Tierney and Kandane's approximation algorithm to obtain Bays estimates, 
and to calculate Bays estimates.  We assume that α and β have an initial gamma distribution (α ~ gamma (a, b), 

β ~ gamma (c, d).  We suggest that the prior distributions of the parameters are incomplete. Press in 2011, 

suggests using very small positive values for the meta parameters in the initial distribution. Hence, we will 

assume a = b = c = d = 0.0001 and the assumed sample size and iterations are 1000 times for each simulation 
experiment to obtain homogenous in estimating the reliability function of the Frechet distribution. The 

simulation experiments were carried out using the MATLAB programming language.  

The values of the reliability  function were generated using the following formula: 

𝑅̃(𝑡𝑖) = 1 − 𝑒𝑥 𝑝 (−(
𝛽̂

𝑡𝑖
)
𝛼̂

)⁡⁡;⁡𝑖 = 1,2, …… , 𝑛                                                           (40)                                 

After the creation of the randomized fuzzy values t̃i of the CDF function according to the size of the given 

samples and the default values of initial parameters according to the formula (R̃(ti)), the values of ti and the 

initial parameters were computed according to the functions of the µt̃i(t) for each fuzzy unit t̃i .Then,  extract 

for each R̃(ti) and find expectation of R̃(ti)⁡as follows: 

𝑅̃(𝑡) = 𝐸̂(𝑅̃(𝑡𝑖)/𝑥̃𝑖) =
1

𝑲
∑ 𝑅(ℎ)𝐾
ℎ=1 (𝑡)                                                               (41) 

Comparison of simulation results: Simulation results are compared using the following statistical measures: 

MSE(R̃) =
1

K
∑ (R̃ − R)2K
i=1 ⁡                                                                          (42)                                                 

𝑀𝐴𝑃𝐸(𝑅̃) =
1

𝐾
∑ |

𝑅̃−𝑅

𝑅
|⁡⁡⁡
⁡

𝑘
𝑖=1                                                                           (43) 

Table 2. MSE and MAPE for parameters and reliability for 𝛼 = 0.5⁡, 𝛽 = 0.5 

𝒏 
 MLE Bays 

 Estimate MSE MAPE Estimate MSE MAPE 

𝟏𝟎 

𝛂 ̂ 0.665352 0.004675 0.330703 0.614329 0.001538 0.228658 

𝛃̂ 0.351727 0.004442 0.297344 0.585701 0.000934 0.171403 

𝐑̃ 0.602032 0.026839 1.395128 0.746900 0.001419 0.491027 

𝟓𝟎 

𝛂 ̂ 0.717622 0.001013 0.087049 0.524356 0.000014 0.009742 

𝛃̂ 0.413690 0.000185 0.034524 0.525714 0.000016 0.010286 

𝐑̃ 0.660551 0.001221 0.449476 0.715346 0.000099 0.132370 

𝟏𝟎𝟎 

𝛂 ̂ 0.687524 0.000386 0.037505 0.509676 0.000001 0.001935 

𝛃̂ 0.401543 0.000126 0.019691 0.510069 0.000001 0.002014 

𝐑̃ 0.674039 0.001568 0.459365 0.698277 0.000015 0.051181 

𝟏𝟓𝟎 

𝛂 ̂ 0.696143 0.000264 0.026152 0.506274 0.000001 0.000837 

𝛃̂ 0.417060 0.000047 0.011059 0.504268 0.000001 0.000569 

𝐑̃ 0.675177 0.000671 0.363850 0.702000 0.000004 0.024439 

𝟓𝟎𝟎 

𝛂 ̂ 0.693670 0.000076 0.007747 0.502247 0.000001 0.000090 

𝛃̂ 0.407790 0.000018 0.003688 0.502485 0.000001 0.000099 

𝐑̃ 0.675183 0.000887 0.408905 0.701440 0.000001 0.012886 

 

Table 3.  MSE and MAPE for parameters and reliability for 𝛼 = 0.75⁡, 𝛽 = 0.75 

𝒏 
 MLE Bays 

 Estimate MSE MAPE Estimate MSE MAPE 

𝟏𝟎 

𝛂 ̂ 1.031283 0.016770 0.506585 0.864063 0.001781 0.152084 

𝛃̂ 0.632140 0.002330 0.169113 0.839404 0.001100 0.119206 

𝐑̃ 0.669902 0.003624 0.583852 0.718141 0.001088 0.445143 

𝟓𝟎 

𝛂 ̂ 1.054480 0.002097 0.081195 0.776431 0.000016 0.007048 

𝛃̂ 0.723381 0.000028 0.008296 0.774335 0.000013 0.006489 

𝐑̃ 0.675416 0.000082 0.126202 0.693642 0.000076 0.119272 
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𝒏 
 MLE Bays 

 Estimate MSE MAPE Estimate MSE MAPE 

𝟏𝟎𝟎 

𝛂 ̂ 1.013391 0.000779 0.035119 0.761222 0.000002 0.001496 

𝛃̂ 0.710599 0.000021 0.005253 0.761430 0.000002 0.001524 

𝐑̃ 0.695482 0.000096 0.124914 0.704118 0.000019 0.056473 

𝟏𝟓𝟎 

𝛂 ̂ 1.034828 0.000560 0.025318 0.758009 0.000001 0.000712 

𝛃̂ 0.712536 0.000011 0.003330 0.759399 0.000001 0.000835 

𝐑̃ 0.692972 0.000055 0.103427 0.712085 0.000012 0.045662 

𝟓𝟎𝟎 

𝛂 ̂ 1.017954 0.000147 0.007145 0.752146 0.000001 0.000057 

𝛃̂ 0.720460 0.000003 0.000788 0.752664 0.000001 0.000071 

𝐑̃ 0.701109 0.000059 0.105242 0.704801 0.000001 0.012883 

Table 4. MSE and MAPE for parameters and reliability for 𝛼 = 2⁡, 𝛽 = 2 

𝒏 
 MLE Bays 

 Estimate MSE MAPE Estimate MSE MAPE 

𝟏𝟎 

𝛂 ̂ 0.961496 0.111377 0.519252 2.095691 0.001278 0.047845 

𝛃̂ 1.978953 0.000049 0.010524 2.097172 0.001099 0.048586 

𝐑̃ 0.656074 0.001992 0.430734 0.750037 0.001255 0.460582 

𝟓𝟎 

𝛂 ̂ 0.761001 0.030734 0.123900 2.013586 0.000006 0.001359 

𝛃̂ 1.983040 0.000006 0.001696 2.014768 0.000008 0.001477 

𝐑̃ 0.667898 0.002216 0.627775 0.715095 0.000037 0.065543 

𝟏𝟎𝟎 

𝛂 ̂ 0.752470 0.015581 0.062377 2.010086 0.000001 0.000504 

𝛃̂ 1.984084 0.000003 0.000796 2.009738 0.000001 0.000487 

𝐑̃ 0.664564 0.001710 0.567223 0.705900 0.000013 0.044867 

𝟏𝟓𝟎 

𝛂 ̂ 0.760166 0.010257 0.041328 2.006478 0.000001 0.000216 

𝛃̂ 1.983691 0.000002 0.000544 2.005509 0.000001 0.000184 

𝐑̃ 0.662468 0.001601 0.562565 0.703427 0.000004 0.025312 

𝟓𝟎𝟎 

𝛂 ̂ 0.760789 0.003072 0.012392 2.002381 0.000001 0.000024 

𝛃̂ 1.985192 0.000001 0.000148 2.002111 0.000001 0.000021 

𝐑̃ 0.660134 0.001261 0.506470 0.700601 0.000001 0.009800 

Table 5. MSE and MAPE for parameters and reliability for 𝛼 = 0.5⁡, 𝛽 = 1 

𝒏 
 MLE Bays 

 Estimate MSE MAPE Estimate MSE MAPE 

𝟏𝟎 

𝛂 ̂ 0.480387 0.000066 0.039764 0.581383 0.000875 0.162766 

𝛃̂ 0.948387 0.000290 0.051613 1.124961 0.001814 0.124961 

𝐑̃ 0.680231 0.000084 0.124583 0.717208 0.000569 0.320202 

𝟓𝟎 

𝛂 ̂ 0.497147 0.000001 0.001169 0.522001 0.000012 0.008800 

𝛃̂ 0.948844 0.000058 0.010231 1.017313 0.000008 0.003463 

𝐑̃ 0.696751 0.000075 0.115406 0.709575 0.000019 0.055026 

𝟏𝟎𝟎 

𝛂 ̂ 0.497423 0.000001 0.000526 0.511398 0.000002 0.002280 

𝛃̂ 0.953799 0.000023 0.004620 1.007785 0.000001 0.000778 

𝐑̃ 0.690411 0.000060 0.105657 0.703406 0.000006 0.028394 

𝟏𝟓𝟎 

𝛂 ̂ 0.497686 0.000001 0.000309 0.504592 0.000001 0.000459 

𝛃̂ 0.954672 0.000014 0.003022 1.005559 0.000001 0.000278 

𝐑̃ 0.691585 0.000055 0.103434 0.700917 0.000001 0.016393 

𝟓𝟎𝟎 

𝛂 ̂ 0.498290 0.000001 0.000068 0.502093 0.000001 0.000084 

𝛃̂ 0.953149 0.000004 0.000937 1.001977 0.000001 0.000040 

𝐑̃ 0.694683 0.000055 0.105597 0.702256 0.000001 0.006456 
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Table 6. MSE and MAPE for parameters and reliability for 𝛼 = 2⁡, 𝛽 = 3 

𝒏 
 MLE Bays 

 Estimate MSE MAPE Estimate MSE MAPE 

𝟏𝟎 

𝛂 ̂ 0.775972 0.000527 0.040430 2.106751 0.001504 0.053376 

𝛃̂ 1.987516 0.000025 0.007327 3.072710 0.000700 0.024237 

𝐑̃ 0.703430 0.000017 0.036894 0.735256 0.000358 0.234907 

𝟓𝟎 

𝛂 ̂ 1.178034 0.014653 0.082197 2.016922 0.000008 0.001692 

𝛃̂ 2.991681 0.000001 0.000555 3.020808 0.000011 0.001387 

𝐑̃ 0.675872 0.000947 0.348272 0.702239 0.000024 0.062531 

𝟏𝟎𝟎 

𝛂 ̂ 1.158120 0.008573 0.042094 2.009988 0.000001 0.000499 

𝛃̂ 2.992516 0.000001 0.000249 3.011038 0.000001 0.000368 

𝐑̃ 0.677362 0.000883 0.351342 0.700187 0.000007 0.034524 

𝟏𝟓𝟎 

𝛂 ̂ 1.029419 0.006931 0.032353 2.007362 0.000001 0.000245 

𝛃̂ 2.991553 0.000000 0.000188 3.004735 0.000001 0.000105 

𝐑̃ 0.670388 0.001062 0.404797 0.708897 0.000002 0.015307 

𝟓𝟎𝟎 

𝛂 ̂ 1.746605 0.008385 0.014207 2.002305 0.000001 0.000023 

𝛃̂ 2.993042 0.000001 0.000050 3.002757 0.000001 0.000018 

𝐑̃ 0.680761 0.000644 0.343294 0.697266 0.000001 0.008551 

 

3. Applied side 

Cancer is a serious and rapidly spreading disease. Every year millions of people are infected with this disease. 

This deadly disease is the main factor in research and new discoveries made by scientists in the field of 

treatment. New technology devices developed as a result of these efforts offer new sources of cancer diagnosis 
and treatment. Therefore, the importance of the devices that reveal the disease was to be addressed. One of the 

most important is the linear accelerator device, which is a modern and advanced device in the detection of cancer 

and radiation treatment. 

3.1. Linear accelerator 

Linear accelerator device is one of the advanced and modern devices in the detection and destruction of cancer 

cells by radiation. This device is used in the following cases: 

• To treat cancer by destroying cancer cells. 
• Control cancer by preventing cancer cells from growing and spreading. 

• Relieving cancer symptoms such as pain. 

The device is one of the advanced medical equipment used to treat tumors as in the center of Babylon for the 

treatment of tumors.  For a linear accelerator providing service to citizens on a continuous basis, the center 
operates only one device for the service.  But, in the event of malfunction of the device or stopped working for 

technical reasons, they operate the second device to provide continuous service. However, it is noted that there 

is no accurate recording of the times of operation of the device and the times of stopping the device. The 
operators of the device must know the operating periods and holidays accurately in the case of malfunction of 

the device. For example, the device operator must inform the management of the center orally and the hospital 

management. In turn, the management must call the company that equipped the device to carry out the repair of 
device imprecision in recording operating times and holidays. This leads us to say that data on the time of 

operation of the linear accelerator are fuzzy numbers and belong to the fuzzy times with certain degrees of 

membership. 

Approximate information was obtained on the length of operation of the equipment until the work of the 
specialists in charge of the device, the supervising engineers and the administration of the center. These times 

were arranged in Table 7, measured in months for the period from the beginning of installation of the equipment 

at the center: 

Table 7. Extend the speed of the linear accelerator system until it stops working in months 

𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 
12.6 61 6.5 51 4.6 41 3.5 31 2.6 21 2.0 11 1.3 1 

14.0 62 6.6 52 5.1 42 3.6 32 2.8 22 2.0 12 1.4 2 

17.7 63 6.8 53 5.2 43 3.7 33 3.0 23 2.0 13 1.4 3 
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𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 𝑡𝑖  𝑖 

  7.7 54 5.3 44 3.8 34 3.0 24 2.1 14 1.6 4 

  8.5 55 5.5 45 3.8 35 3.1 25 2.2 15 1.7 5 

  10.4 56 5.8 46 3.9 36 3.3 26 2.2 16 1.7 6 

  10.6 57 5.8 47 4.1 37 3.3 27 2.4 17 1.8 7 

  10.6 58 5.9 48 4.2 38 3.3 28 2.4 18 1.8 8 

  10.9 59 6.1 49 4.5 39 3.4 29 2.4 19 1.9 9 

  11.4 60 6.3 50 4.5 40 3.5 30 2.5 20 2.0 10 

 

3.2. Data fuzzification 

The real sample vector x was converted to mist using the fuzzy information system as in Figure. 4 corresponding 
to the following functions: 

 

 ⁡𝜇𝑥7(𝑥) = {

𝑥−3.3

0.5
⁡⁡⁡⁡⁡3.3 ≤ 𝑥 ≤ 3.8

3.9−𝑥

0.1
⁡⁡⁡⁡3.8 ≤ 𝑥 ≤ 3.9

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

   

𝜇𝑥8(𝑥) = {

𝑥−3.8

0.1
⁡⁡⁡⁡⁡3.8 ≤ 𝑥 ≤ 3.9

5.1−𝑥

1.1
⁡⁡⁡⁡3.9 ≤ 𝑥 ≤ 5.1

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

  

⁡⁡⁡𝜇𝑥9(𝑥) = {

𝑥−3.9

1.1
⁡⁡⁡⁡⁡3.9 ≤ 𝑥 ≤ 5.1

6.1−𝑥

1
⁡⁡⁡⁡5.1 ≤ 𝑥 ≤ 6.1

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

  

 

𝜇𝑡1(𝑥) = {

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≤ 1.3
1.7−𝑥

0.4
⁡⁡⁡⁡1.3 ≤ 𝑥 ≤ 1.7

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

   

 

 

𝜇𝑥2(𝑥) = {

𝑥−1.3

0.4
⁡⁡⁡⁡⁡1.3 ≤ 𝑥 ≤ 1.7

1.8−𝑥

0.1
⁡⁡⁡⁡1.7 ≤ 𝑥 ≤ 1.8

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤⁡

   

 

 

𝜇𝑥3(𝑥) = {

𝑥−1.7

0.1
⁡⁡⁡⁡⁡1.7 ≤ 𝑥 ≤ 1.8

2.1−𝑥

0.3
⁡⁡⁡⁡1.8 ≤ 𝑥 ≤ 2.1

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

   

 

 

𝜇𝑥4(𝑥) = {

𝑥−1.8

0.3
⁡⁡⁡⁡⁡1.8 ≤ 𝑥 ≤ 2.1

2.6−𝑥

0.5
⁡⁡⁡⁡2.1 ≤ 𝑥 ≤ 2.6

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

  

 
 

𝜇𝑥5(𝑥) = {

𝑥−2.1

0.3
⁡⁡⁡⁡⁡2.1 ≤ 𝑥 ≤ 2.6

3.3−𝑥

0.7
⁡⁡⁡⁡2.6 ≤ 𝑥 ≤ 3.3

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

  

 

   

𝜇𝑥6(𝑥) = {

𝑥−2.6

0.7
⁡⁡⁡⁡⁡2.6 ≤ 𝑥 ≤ 3.3

3.8−𝑥

0.5
⁡⁡⁡⁡3.3 ≤ 𝑥 ≤ 3.8

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤
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⁡⁡⁡⁡𝜇𝑥10(𝑥) = {

𝑥−5.1

1
⁡⁡⁡⁡⁡5.1 ≤ 𝑥 ≤ 6.1

6.1−𝑥

4.5
⁡⁡⁡⁡6.1 ≤ 𝑥 ≤ 10.6

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

  

⁡⁡⁡⁡⁡𝜇𝑥11(𝑥) = {

𝑥−6.1

7.1
⁡⁡⁡⁡⁡10.6 ≤ 𝑥 ≤ 17.7

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 17.7
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜. 𝑤

  

   

 

 

 

 

 

 

 

 

 

 

Figure 4. Fuzzy information system used to process real data 

3.3. Data analysis 

We have used the relationship between the arithmetic mean and the variance for the distribution of the parameter 

matrix. This is to obtain the initial value of the algorithms used in the estimation of the parameters by solving 

the nonlinear equations below and using the Newton-Raphson method. 

𝑀 = 𝛽Γ(1 −
1

𝛼
)                                                                                                   (44)                                                                  

𝑆 = 𝛽2Γ (1 −
2

𝛼
) − (βΓ(1 −

1

𝛼
))

2

                                                                               (45) 

The GOF tests mentioned have used to determine the appropriateness of the distribution to represent the duration 
of the linear accelerator operation. Table 8 summarizes the estimates of the methods of Frechet distribution 

parameters, the rate of uncertainty function and the values of goodness of fit tests for real data. 

 

 
Table 8. Results of analysis of real data 

𝑀𝑒𝑡ℎ 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑇𝑦𝑝𝑒⁡𝑜𝑓⁡𝑡𝑒𝑠𝑡⁡ 

𝛼 𝛽 𝑅̃ 
𝐻𝑄𝐼𝐶 𝐶𝐴𝐶𝐼 𝐵𝐼𝐶 𝐴𝐶𝐼 

𝐹𝑀𝑙 
3.584435 4.2195 0.645402 821.1003 831.816 821.9623 16.25198 

𝐹𝐵𝑎𝑦𝑠 
2.9057 3.4618 0.557766 599.1445 609.8602 600.0066 15.61715 

 

We note that the four varieties of fit goodness for Bayes method has achieved the lowest value of the maximum 
likelihood method. This indicates that the duration data of the linear accelerator is more consistent with the 

Fuzzy Frechet distribution when estimating the parameters of this distribution in Bayes method. 

 
4. Results 

• The Bays method exceeds the estimate of the maximum likelihood method. The fuzzy reliability was 

estimated using Bays method with the lowest MSE and the least MAPE. 

• In the fuzzy Bays method, when sample size is larger, the MSE and the MAPE are reduced to as little as the 

sample size is 500. 
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• The parameter estimated by Bays method and maximum likelihood method with the default values as well 

as the fuzzy reliability converges from the default reliability as the size of the sample increases. 

• Bayes method has achieved the lowest value of the maximum Likelihood method. This indicates that the 
duration data of linear accelerator is more consistent with the Fuzzy Frechet distribution when estimating 

the parameters of this distribution in Bayes. 

5. Conclusions 

The best method to estimate the fuzzy reliability of the Frichet distribution is by fuzzy Bayes method at large 

sample sizes.  
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