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ABSTRACT   

Several previous studies have addressed various topics in regression analysis and estimation of the 

appropriate regression equation. It assumes that there is a known and pre-defined function relationship 

between variables. The studied variables are known for distribution using some known methods of 
estimation, such as the ordinary least squares method (OLS) and the maximum likelihood method (MLE). 

The parameter model can be estimated due to problems arising from the application of the parameter model, 

because the theoretical assumptions of the model application are not met. Here, we adopted another method 

of estimating the regression equation using non-parametric methods. It proved its efficiency and ability to 
analyze data without the need for prior assumptions on the model. Based on the adopted data, it determines 

the functional shape of the studied population. Therefore, the aim of this research is to use non-parametric 

smoothing methods to approximate the non-parametric regression function to the real regression function. 
This is done by using some non-parametric smoothing methods such as Kernel methods by Nadaraya-Watson 

and the method of the nearest neighbor (K-Nearest-Neighbor) depending on the bandwidth (h).The study 

uses the experimental method of simulation on two test functions. Three sizes of sample data (n = 15, n = 50, 

n = 75) and three values for random error variance (σ2 = 0.5), (σ2 = 1), (σ2 = 2) are assumed. Kernel 
methods based on Nadaraya-Watson Smoothed Cross Validation are the best choice for the bandwidth of the 

first test function. On the other hand, Least Squared Cross Validation method for the forensic crossing is the 

best choice for the bandwidth of the second test function. The second one was better than the neighbor method 
closest to the first test function. 
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1. Introduction  

The enormous potential and rapid development of electronic computers in accomplishing complex calculations 

have made non-parametric statistical methods more attractive to researchers than methods of estimating the 

regression of teachers. This is because of their high flexibility and lack of rigidity in computerized statistical 
methods [1]. The imposition of severe restrictions on the model and the researcher's interest in non-parametric 

regression models is to give a general description of the relationship between the explanatory variable 𝑋𝑖 and 

the response variable 𝑌𝑖  and does not study the details of that relationship. Therefore, the non-parametric Kernel 

function by an estimator (Nadaraya-Watson) will be used to find the estimated regression. The estimate of 𝑚 in 

the regression model in equation (1) is as follows [2]: 

 

𝑌𝑖 = 𝑚(𝑋𝑖) +  𝜖𝑖                 𝑖 = 1, … , 𝑛                                  (1)           
 

The problem of applying parameter regression models occurs when the specific assumptions for applying this 

model are not met. Therefore, the researchers use the non-parameter regression model, which does not impose 
limitations on the model. 

mailto:malsharood@gmail.com
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The aim of this study is to estimate the bandwidth of the non-parametric regression model of the Kernel function 
using the Nadaraya Watson smoothing and the Nearest neighbor method with parametric analyses. 

 

2. Kernel smoothing (Nadaraya-Watson) 

It is a non-parametric method proposed by Nadaraya and Watson in 1964 [2]. They are the first to use this 

estimator based on the method of serial weights. This method estimates the function m in equation (1), and it is 

characterized as being without parameter. This estimator is characterized by having a specific and continuous 
function and its integration is equal to unity . The general formula of Nadaraya-Watson estimator is as follows:  

𝑚̂ℎ(𝑥) =  
∑ 𝐾ℎ(𝑥 − 𝑋𝑖)𝑦𝑖

𝑛
𝑖=1

∑ 𝐾ℎ(𝑥 − 𝑋𝑖)𝑛
𝑖=1

                           … (2)                                         

∵   𝑊ℎ(𝑥 − 𝑋𝑖) =
𝐾ℎ(𝑥 − 𝑋𝑖)

∑ 𝐾ℎ(𝑥 − 𝑋𝑖)𝑛
𝑖=1

                … (3)                                      

∴    𝑚̂ℎ(𝑥) = ∑ 𝑊ℎ(𝑥 − 𝑋𝑖) 𝑦𝑖

𝑛

𝑖=1

                            … (4)                                           

Where, 

𝑊: : Weight function 
h : Bandwidth 

𝐾ℎ(𝑥 − 𝑋𝑖): The function kernel  

∑ 𝑊ℎ(𝑥 − 𝑋𝑖) = 1

𝑛

𝑖=1

                              … (5)                                                       

Kernel functions generally have the following characteristics [3]:  
• K (u) is a specific probability density function (non-negative) in the case of  K (u) ≥0 for each (u), such that 

K (u) ∶R → R, as well as having symmetric characteristics. 

• Moments for Kernel function are calculated as follows: 

𝑀𝑗(𝐾) =  ∫ 𝑢𝑗  𝐾(𝑢)𝑑(𝑢)

∞

−∞

                                           … (6)                                                                                     

• Symmetry K (u) = K (-u) for each (u). 

 

• All individual moments are equal to zero. 

 ∫ 𝑢 𝐾(𝑢)𝑑(𝑢) = 0

∞

 −∞

                                        … (7)                                                                                

𝐶𝐾 = 𝑅(𝐾) = ∫ 𝐾2(𝑢)𝑑(𝑢)                                … (8)                

∞

−∞

 

𝑑𝐾 = 𝑀2(𝐾) = ∫ 𝑢2𝐾(𝑢)𝑑(𝑢)                                                                                                                         … (9)

∞

−∞

 

Where, k represents the degree of Kernel (Kernel order). 

Some of the commonly used Kernel functions can be summarized as shown in Table 1:  

 

Table 1. Kernel functions  

Kernel K(u)  

Gaussian 
𝑘(𝑢) =

1

√2𝜋
exp (−

𝑢2

2
) 

 

I(-, ) 
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Kernel K(u)  

Uniform 𝑘(𝑢) =
1

2
 [-1, 1] 

   

Epanechnikov 𝑘(𝑢) =
3

4
(1 − 𝑢2) [-1, 1] 

   

Triweight 𝑘(𝑢) =
35

32
(1 − 𝑢2)3 [-1, 1] 

   

   

 

3. Estimation methods 

The Kernel method was used by Nadaraya-Watson smoothing to find the estimated regression equation. This 
estimator depends on bandwidth (h) which can be calculated based on the following: 

 

1. Least Squared Cross Validation method. 

2.  Biased Cross Validation method.  

3. Smoothed Cross Validation method.  

3.1. Least squared cross validation method (LSCV) 

This method proposed Bowman in 1984
 
, is the most widely used method, and it is one of the best studied 

methods is to estimate ĥo from minimizing the integrated square error (ISE h)  of the bandwidth [4,5] . 

ISE(h) = ∫ [f̂(x) − f(x)]
2

dx

∞

−∞

 

              =  ∫ f̂ 2(x)dx − 2 ∫ f̂

∞

−∞

(x)f(x)dx + ∫ f 2(x)dx

∞

−∞

∞

−∞

… (10) 

Note that: 

∫ f 2(x)dx

∞

−∞

: The amount does not depend on the bandwidth h 

∫ f̂ 2(x)dx

∞

−∞

: Information value calculated from data 

∫ f̂

∞

−∞

(x)f(x)dx: The only amount to be estimated. 

By subtracting the constant, we can perceive that the reduction of ISE relative to h is equal to: 
 

ISE(h) − ∫ f 2(x)dx = ∫ f̂ 2(x)dx − 2 ∫ f̂

∞

−∞

(x)f(x)dx

∞

−∞

∞

−∞

… (11) 

Leave-one-out Cross Validation was used to estimate ∫ f̂(x)f(x)dx
∞

−∞
 , which represents Ε f (̂x) and it is equal 

to: 
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Ε f̂(x) = n−1 ∑ f̂−i(Xi)

n

i=1

                                                               … (12) 

 

From the offset the value Ε f̂(x), We get  LSCV as follows:  

 

LSCV(h) = ∫ f̂ 2(x)dx −
2

n
∑ f̂−i(Xi)

n

i=1

∞

−∞

                                  … (13) 

 
This method can also be called an unbiased forensic transit method. It is introductory parameter that reduces 

the function: 

ℎ̂𝐿𝑆𝐶𝑉 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ𝐿𝑆𝐶𝑉(ℎ)                                                                     … (14) 

 

3.2.  Biased cross validation method (BCV)  

This method was proposed by Scott and Terrell (1987), which is based on the average integrated square error 
[4, 6]: 

𝐴𝑀𝐼𝑆𝐸(ℎ) = (𝑛ℎ)−1𝑅(𝐾) + ℎ4 (
𝑀2(𝐾)

2
)

2

𝑅(𝑓2)    

                     =  
𝑅(𝐾)

𝑛ℎ
+

ℎ4𝑑𝐾
2

4
𝑅 (𝑓́́)                                                   … (15) 

∵ 𝑅 (𝑓́́) = 𝑅(𝑓2) = ∫ [𝑓́́(𝑥)]
2

∞

−∞

𝑑𝑥   

The BCV (h) function is obtained by replacing the unknown values in 𝑅 (𝑓́́) with: 

𝑅̃ (𝑓́́) = 𝑅 (𝑓́
́
  (. , ℎ)) −

𝑅 (𝐾́́)

𝑛ℎ5
=  𝑛−2  ∑ (𝐾́́ℎ ∗ 𝐾́́ℎ) (𝑋𝑖 − 𝑋𝑗)

𝑖≠𝑗

 … (16) 

The introductory parameter that reduces the function is: 

ĥBCV = argminh∈Hn
[BCV(h)]                                                               … (17) 

 

3.3.  Smoothed cross validation method (SCV) 

This method was suggested by Park and Marron in 1992, which is based on the mean integrated square error 

MISE (h) [6, 7]: 

𝑀𝐼𝑆𝐸(ℎ) = 𝐼𝑉(ℎ) + 𝐼𝐵(ℎ) 

Where, IV is integrated variance and IB is integrated squared bias. They can computed by: 

𝐼𝑉(ℎ) = ∫ 𝑣𝑎𝑟 (𝑓(𝑥)) 𝑑𝑥 =
𝐶𝐾

𝑛ℎ
+

1

𝑛
∫(𝐾ℎ ∗ 𝑓)2

∞

−∞

∞

−∞

(𝑥)𝑑𝑥   

𝐼𝐵(ℎ) = ∫ 𝑏𝑖𝑎𝑠2

∞

−∞

(𝑓(𝑥)) 𝑑𝑥 = ∫ (𝐾ℎ ∗ 𝑓 − 𝑓)2

∞

−∞

(𝑥)𝑑𝑥 

           = ∫(𝐾ℎ ∗ 𝑓)2

∞

−∞

(𝑥)𝑑𝑥 − 2 ∫ (𝐾ℎ ∗ 𝑓)(𝑥)𝑓(𝑥)𝑑𝑥 + ∫ 𝑓2(𝑥)𝑑𝑥

∞

−∞

∞

−∞

       … (18) 

The SCV is originated from LSCV as n≈n-1. If we can use the Leave-one-out of the experimental estimator 

(𝑓𝑃,−𝑖(𝑥; 𝑔)), we can use the following equation: 

𝐿𝑆𝐶𝑉 =
𝐶𝐾

𝑛ℎ
+

1

𝑛(𝑛 − 1)
∑ ∑(𝐾ℎ ∗ 𝐾ℎ − 2𝐾ℎ)(𝑋𝑖 − 𝑋𝑗)

𝑖≠𝑗
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                                              =
𝐶𝐾

𝑛ℎ
+

1

𝑛(𝑛 − 1)
∑ ∑(𝐾ℎ ∗ 𝐾ℎ − 2𝐾ℎ + 𝐾0)(𝑋𝑖 − 𝑋𝑗)

𝑖≠𝑗

    … (19) 

The last equation is obtained if there is no repetition of data as in one probability of continuous data. SCV (h) 

is equal to LSCV (h) at g = 0. They also suggested that  ℎ̂𝑆𝐶𝑉 = ℎ̂𝑆𝐶𝑉(𝑔), which comes from the reduction of 

SCV (h):  

ĥSCV = argminh∈Hn
[SCV(h)]                                                                   … (22) 

 

Their results also showed that the relative convergence rate ℎ̂𝑆𝐶𝑉 for ℎois 𝑂𝑃(𝑛−1/2) as the best ratio achieved. 

 

4. Nearest neighbour method 

Random model can be resultant from the ratio of the average real distance between each adjacent site in the 

region to the average distance between the same numbers of sites if they were distributed randomly in the same 

area. If the bandwidth is adjusted to include a fixed number of observations (k views), the estimated k-Nearest 
Neighbor (k-NN) is estimated for point x. The scale is based on knowing the distance between each location 

representing the point in the area and adjacent locations. The actual distance stands for the sum of the actual 

distances divided by the number of distances which is always equal to the number of sites. It can be compared 

it with the average expected distance (random distance) in the theoretical random distribution [8] . 

The Kernel function 𝑊𝑛𝑖(x) can be expressed as: 

 

𝑊𝑛𝑖(x)=
𝑘(

𝑥𝑖−𝑥𝑗

𝑘𝑛
)

∑ 𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
)𝑛

𝑗=1

                                            (23) 

                        
𝑖, 𝑗 = 1,2, … 𝑛 

Since k (.) represents a restricted and non-negative kernel function, and u> 1 is achieved for all values of k (u) 
= 0, Kn represents the Euclidian distance between x and k from the nearest neighbor of x. Here, K = Kn with 

kn⟶∞ and n⟶∞. In the other words, k represents the bandwidth similar to the h value in Nadaraya- Watson 

estimator if the Kernel functions are applied to this estimator as in the Nadaraya- Watson model. The 

introductory parameter k is calculated by:  
 

Kn=d(xi,xj)=√∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑛
𝑘=1     ,i,j =1,2,…n         (24) 

 
K-NN estimator is heavily influenced by the boot parameter K. The K parameter adjusts the degree of 

Smoothing of the estimated curve. By compensating for a value in equation (2), we get the estimate of the 

nearest neighbor: 
 

m̂(X)=
∑ 𝑘(

𝑥𝑖−𝑥𝑗

𝑘𝑛
)yi𝑛

𝐼=1

∑ 𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
)𝑛

𝑗=1

     , 𝑖, 𝑗 = 1,2, … 𝑛                                            (25) 

5. The simulation 

Simulation was used to generate the observations of the study according to the sample sizes (n = 15,50, and 75). 

The random error is distributed according to the standard normal distribution with an average equal to zero and 
variance. The Ndaraya-Watson methods and Nearest Neighbor mentioned in the theoretical aspect and for all 

sample sizes were applied. AMSE standard was adopted in the differentiation between the estimation methods 

according to the following steps: 
 

1- Generating the data of the explanatory variables (𝑋𝑖), so that they are distributed in a standard normal 

distribution, 𝑋𝑖~N(0,1). 

 

2- Two test functions were selected as follows: 

 

Table 2.  The functions used in the simulation  
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Test function 

 

Formula 

 

Curved shape 

 
 

 

 
Nonlinear 

function 

 

 
 

 

Y(x)= 

sin(2𝝅𝒙𝟑 ) +
𝟎. 𝟓(𝒙 − 𝟎. 𝟕𝟓)𝟐 

 

 
 

 

 

Nonlinear 
function 

 

 
 

Y(x)=x+2exp(-

64𝒙𝟐) 

 

 

 

 
 
3- Generate random errors so that a standard normal distribution was distributed with an average of zero and 1 

variation; 

ei ~N(0,1)    ,i=1,2,…,n   
4-Dependent Variable: The adopted variable is calculated by adding the functions of the explanatory variable 

m (x) plus the random error. Three sample sizes were selected (n = 15, 50, and 75). Three levels of variance 

were used: 

  .𝜎2 = 2 and  𝜎2 = 1  and  𝜎2 = 0.5 
5-The simulation experiments were relied on a kind of Kernel function as a weight function in the kernel 

methods (Epanechnikov). 

 
6-Simulation experiment was repeated for each case 1000 times to ensure randomization. 

 

7-The methods of estimation by Nadaraya- Watson smoothing are compared based on the standard accuracy 
rate of average mean square error (AMSE), to choose the best bandwidth. The results are shown in Table 3. 

 

 

Table 3. The results of the AMSE standard for cross validation methods for the selection of the N-W 
bandwidth of the first test function with different sample sizes and variance 

 

-2 0 2 4

0
5

1
0

x

y
1

-2 0 2 4

-6
-4

-2
0

2
4

x

y
2

The method 
Sample 

size 
𝜎2 = 0.5 𝜎2 = 1 𝜎2 = 2 

LSCV 
Bandwidth 

15 0.019655782 0.02145935 0.02871872 
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6. Analysis of the results 

Through Table 3 of the first test function, we found that: 

Y(x)= sin(2𝜋𝑥3 ) + 0.5(𝑥 − 0.75)2 

At the variance level 𝜎2 = 0.5 , the results have shown the following: 

1- For the sample size (n = 15), Kernel (h: SCV) preference was found where the value of the differential 

criterion was AMSE = 0.01923976, then the Kernel estimator (h: LSCV) with the value of the differential 

criterion AMSE = 0.019655782 and the Kernel estimator (h: BCV) with the criterion value. The trade-off is in 

the case of AMSE = 0.01996442. 
 2- When increasing the sample size (n = 50), we notice that the Kernel estimator (h: SCV) is given a preference: 

AMSE = 0.018002194, then Kernel (h: LSCV) with the value of AMSE = 0.018795010, followed by the Kernel 

(h: BCV) estimator. The trade-off is in the case of AMSE = 0.019649987. 
3-By increasing the sample size (n = 75), we notice that the Kernel estimator (h: SCV) is given a differential 

criterion in the case of AMSE =0.018218113 and Kernel (h: LSCV) with a differential criterion of AMSE 

=0.018918134. Finally, it is followed by the Kernel estimator (h: BCV) with the differential criterion in the case 

of AMSE =0.019920357. 

At the variance level 𝜎2 = 1 ,  the results have shown the following: 

 1- For the sample size (n = 15), the preference for Kernel estimator (h: BCV) was found. The value of the 

differential criterion was AMSE = 0.02110338, then the Kernel estimator (h: LSCV) with the value of 
differentiation criterion in the case of AMSE= 0.02145935 and the Kernel estimator (h: SCV) with the criterion 

value. The trade-off is in the case of AMSE = 0.02151745. 

 
2- For the sample size (n = 50), the preference for Kernel estimator (h: BCV) was shown in the case of AMSE 
= 0.02067132, Kernel (h: LSCV)  with AMSE=0.02070371, and Kernel (h: SCV) with the criterion value. The 

trade-off is in the case of  AMSE = 0.02091579. 

3-For the sample size (n = 75), the preference for Kernel estimator (h:SCV) was shown in the case of differential 
criterion is      AMSE =0.02008344. Then, Kernel estimator (h: LSCV) under differential criterion is with 

AMSE=0.02025397. Kernel estimator (h: BCV) with differential criterion is with AMSE=0.02080189. 

 

At the variance level 𝜎2 = 2 , the results have shown the following: 

1-For the sample size (n = 15), the preference for Kernel estimator (h: BCV) was shown where the value of the 

differentiation criterion was AMSE = 0.02718635. Then, Kernel estimator (h: LSCV) is with the value of the 

50 0.018795010 0.02070371 0.02514760 

75 0.18918134 0.02025397 0.02581250 

BCV 

Bandwidth 

15 0.01996442 0.02110338 0.02718635 

50 0.019649987 0.02067132 0.02303550 

75 0.019920357 0.02080189 0.02444422 

SCV 

Bandwidth 

15 0.01923976 0.02151745 0.03053390 

50 0.018002194 0.02091579 0.02646993 

75 0.018218113 0.02008344 0.02780044 
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differentiation criterion = 0.02871872 = AMSE.  Kernel estimator (h: SCV) under differentiation criterion is 
with AMSE = 0.03053390. 

 

2- For sample size (n = 50), Kernel estimator (h: BCV) was shown to have a preference value of AMSE = 

0.02303550. Then, Kernel (h: LSCV) is with AMSE=0.02514760 and Kernel (h: SCV) is in the case of                                                    
AMSE differential criterion = 0.02646993. 

3- For the sample size (n = 75), the preference for Kernel estimator (h: BCV) is in the case of the differential 

criterion with AMSE =0.02444422. Then, the Kernel estimator (h: LSCV) is with the value of the 
differential criterion AMSE=0.02581250.   Kernel estimator (h: SCV) under  criterion value with trade-off  

of AMSE =0.02780044. 

Table 4. The results of the AMSE criterion for selecting the bandwidth h in the manner of the nearest neighbor 

(Nearest- Neighbor) of the first test function with the sample sizes and different variances 
 

 

Through Table 4 of the first test function, we found that: 

Y(x)= sin(2𝜋𝑥3 ) + 0.5(𝑥 − 0.75)2 

At the variance level 𝜎2 = 0.5, the preference of the closest neighbor method to the sample size was 75 based 

on the value of the differentiation criterion AMSE=0.007397969. This is followed by the neighbor method 

closest to the size of the curse 50 based on the value of the criterion of trade-off with AMSE=0.008138867. 
Finally, the neighbor method came very close to the sample size of 15 by value of AMSE=0.008795535. 

At the variance  level 𝜎2 = 1  , the preference of the closest neighbor method to the sample size was 15 based 

on the value of the differentiation criterion AMSE=0.01611161 This is followed by the neighbor method closest 

to the size of the curse 75 based on the value of the criterion of trade-off AMSE=0.01632456. Finally, the 

neighbor method came very close the sample size of 50 by AMSE=0.01731858. At the variance  level 𝜎2 = 2, 

the preference of the closest neighbor method to the sample size was 75 based on the value of the differentiation 

criterion with AMSE=0.04543678. This is followed by the neighbor method closest to the size of the curse 15 
based on the value of the criterion of trade-off  with AMSE=0.04562406. Finally, the neighbor method came 

very close to the sample size of 50 by AMSE=0.04814688. 

 

Table 5. The results of the AMSE standard for cross validation method for the selection of the N-W 
bandwidth of the second test function with different sample sizes and variances 

The method 
Sample 
size 

σ2 = 0.5 σ2 = 1 σ2 = 2 

k-Nearest 

Neighbor  

 

15 
 

0.008795535 

 

0.01611161 

 

0.04562406 

50 
 

0.008138867 
 

0.01731858 
 

0.04814688 

75 

 

0.007397969 
 

 

0.01632456 

 

0.04543678 

The method 
Sample 

size 

𝜎2 = 0.5 𝜎2 = 1 𝜎2 = 2 

LSCV 
Bandwidth 

15 0.009967032 0.02398877 0.05370734 

50 0.010147650 0.01859501 0.05584223 

75 0.011036842 0.02058916 0.05806116 

BCV 

Bandwidth 
15 0.01018051 0.02476190 0.05334866 
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Through Table 5 of the second test function, we found that: 

 

Y(x)=x+2exp(-64𝑥2)            
At the variance level  𝜎2 = 0.5 , the results has shown the following: 

1- For the sample size (n = 15), the Kernel estimator (h: LSCV) was given preference, where the value of the 

differential criterion was AMSE = 0.009967032. Then, Kernel estimator (h: BCV) under differentiation criterion 
was with AMSE=0.01018051.The Kernel estimator (h: SCV) with a criterion value under trade-off was with 

AMSE = 0.01034695. 

 2- When increasing the sample size (n = 50), we notice that the Kernel estimator (h: SCV) has a preference: 

AMSE = 0.009917725. Then, Kernel (h: LSCV) is with the value of AMSE = 0.010147650, followed by the 
Kernel (h: BCV) estimator. The trade-off is AMSE = 0.010286902. 
3- When increasing the sample size (n = 75), we notice the preference of the Kernel estimator (h: LSCV). The 

differentiation criterion is given by AMSE =0.011036842.  Then, Kernel estimator (h: BCV) is given by the 
differential criterion with AMSE = 0.011174065, followed by Kernel estimator (h: SCV) under differential 

criterion with AMSE = 0.011412566. 

At the variance level 𝜎2 = 1, the results showed: 

1- For sample size (n = 15), Kernel (h: SCV) preference was shown where the value of the differential criterion 
was AMSE = 0.02236297. Kernel estimator (h: LSCV) under differential criterion is with AMSE 0.02398877 

and the Kernel estimator (h: BCV) under a criterion value under trade-off is  with AMSE = 0.02476190. 

2- For the sample size (n = 50) the preference for Kernel estimator (h: SCV) has been shown as the value of the 
differentiation criterion is with AMSE = 0.01826048, then the Kernel estimator (h: LSCV) with the value of 

differentiation criterion = 0.01859501 = AMSE. Kernel estimator (h: BCV) with the criterion value under trade-

off is  with AMSE = 0.01874658. 
3- For the sample size (n = 75), the preference for Kernel estimator (h: BCV) was shown where the value of the 

differential criterion was  with AMSE =0.02035461. Kernel estimator (h: LSCV) under differentiation criterion 

has been with AMSE=0.02058916, while Kernel estimator (h: SCV) under differential criterion is with AMSE 

= 0.02146697. 

At the variance level 𝜎2 = 2, the results showed the following: 

1- For the sample size (n = 15), Kernel estimator (h: BCV) was favored with the AMSE differential value of 

0.05334866. Kernel (h: SCV) estimator has been with differential AMSE of 0.05342132, and the Kernel (h: 
LSCV) estimator under trade-off is with AMSE = 0.05370734. 
2- For the sample size (n = 50), the preference for Kernel estimator (h: LSCV) was shown where the value of 

the differential criterion was with AMSE = 0.05584223. Kernel estimator (h: BCV) under differential criterion 

was with AMSE=0.05589809.  Kernel estimator (h: SCV) with AMSE differential criterion has been equal to 
0.05663094. 

3-For the sample size (n = 75), the preference for Kernel estimator (h: BCV) was shown where the value of the 

differential criterion was with AMSE =0.05716124. Kernel estimator (h: LSCV) was with the value of the 
differentiation criterion of AMSE=0.05806116. Kernel estimator (h: SCV) under differentiation criterion is with   

AMSE =0.06161511. 

 
Table 6. The results of the AMSE criterion for selecting the bandwidth h in the manner of the nearest neighbor 

(Nearest- Neighbor) of the second test function with the sample sizes and different variance 

50 0.010286902 0.01874658 0.05589809 

75 0.011174065 0.02035461 0.05716124 

       SCV 

Bandwidth 

15 0.01034695 0.02236297 0.05342132 

50 0.009917725 0.01826048 0.05663094 

75 0.011412566 0.02146697 0.06161511 
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Through Table 6 of the second test function, we found 

Y(x)=x+2exp(-64𝑥2)            
At the variance  level 𝜎2 = 0.5, the preference of the closest neighbor method to the sample size was 15 based 

on the value of the differentiation criterion with AMSE=0.005635798. This is followed by the neighbor method 

nearby the size of the curse of 75 based on the value of the criterion of trade-off with AMSE=0.007045684. 

Finally, the neighbor method has been very close to the sample size of 50 by AMSE=0.007675205. 
At the variance level 𝜎2 = 1,  the preference of the closest neighbor method to the sample size was 15 based 

on the value of the differentiation criterion with AMSE=0.01274303.This is followed by the neighbor method 

closest to the size of the curse 50 based on the value of the criterion of trade-off AMSE=0.01290641 finally 
came the neighbor method closest to the sample size of 75 by value AMSE=0.01403334. 

At the variance  level 𝜎2 = 2 , the preference of the closest neighbor method to the sample size was 15 based 

on the value of the differentiation criterion AMSE=0.04101418 This is followed by the neighbor method closest 

to the size of the curse of 50 based on the value of the criterion of trade-off  with AMSE=0.04769047. Finally 
the neighbor method has been very close to the sample size of 75 by AMSE=0.04782431. 

 

7. Conclusions 

Smoothed Cross-Validation is the best non-parameter smoothing for the first test of sample sizes (n = 15,50, 

75) with a variance level of 𝜎2 = 0.5. Biased Cross Validation based on sample size (n = 15,50) under levels 

of variance of  𝜎2 = 1  and  2 has been the finest method used. The best nonparameterization methods for the 

second test function is under sample sizes (n = 15, 75) with level of variance of  𝜎2 = 0.5. The method of 

Smoothed Cross-Validation for the sample size (n = 15,50) and the level of variance 𝜎2 = 1 , has given the best 

results. For the level of variation with 𝜎2 = 2,  Biased Cross Validation method is the best technique. 

The nearest neighbor method of the second test function has better results than the nearest neighbor method of 

the first test function under employed sample sizes. 
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