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Nature-inspired metaheuristic algorithms have been recognized as powerful 

global optimization techniques in the last few decades.Many different 

metaheuristic optimization algorithms have been presented and successfully 

applied to different types of problems. In this paper; seven of newest 

metaheuristic algorithms namely, Ant Lion Optimization, Dragonfly 

Algorithm, Grey Wolf Optimization, Moth-Flame Optimization, Multi-Verse 

Optimizer, Sine Cosine Algorithm, and Whale Optimization Algorithm have 

been tested on unconstrained benchmark optimization problems and their 

performances have been reported. Some of these algorithms are based on 

swarm while some are based on biology and mathematics. Performance 

analysis of these novel search and optimization algorithms satisfying equal 

conditions on benchmark functions for the first time has given important 

information about their behaviors on unimodal and multi-modal optimization 

problems. These algorithms have been recently proposed and many new 

versions of them may be proposed in future for efficient results in many 

different types of search and optimization problems. 
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1. Introduction  

Optimization is the process of searching for the optimal solution. Analytical, enumeration, and heuristic 

methods can be used for optimization task. Heuristic refers to experience-based techniques for problem-

solving and learning. Heuristics are problem-dependent and designed only for the solution of a specific 

problem. A metaheuristic is a higher level heuristic that may provide a sufficiently good solution to any 

optimization problem [1]. Metaheuristic algorithms are simple to implement and faster than the classical 

calculus based optimization algorithms, they are capable of achieving good approximation to the global 

optimum, and they are robust to problem changes. 

 

Metaheuristics are recently getting stronger and increasing their popularity due to their advantages. They are 

used extensively in various fields such as management, computer, engineering due to advantages such as not 

having difficult mathematical models to set up, good computing powers, and requiring no change on the 

interested problems like classical algorithms [2]. The different properties of metaheuristic algorithms cause 

them to perform unequivocally in different optimization problems, and for this reason none of them can be 

superior to others in all situations. Each has different solutions and superiorities. Their modified new versions 
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or novel metaheuristic algorithms are still proposed due to the absence of the most efficient method for all 

types of problems [3]. 

 

There are many metaheuristic optimization methods that are based on biology, physics swarm, sociology, 

music, chemistry, sports, mathematics and plants. In this paper, seven of newest metaheuristic algorithms 

namely, Ant Lion Optimization (ALO) [4], Dragonfly Algorithm (DA) [5], Grey Wolf Optimization (GWO) 

[6], Moth-Flame Optimization (MFO) [7], Multi-Verse Optimizer (MVO) [8], Sine Cosine Algorithm (SCA) 

[9], and Whale Optimization Algorithm (WOA) [10] have been tested on unconstrained benchmark 

optimization problems and their performances have been reported. 

Organization of this paper has been as follows: Section 2 gives brief explanations of the current algorithms 

with pseudo-codes. Section 3 gives the descriptions of the unconstrained unimodal and multi-modal 

benchmark functions. Section 4 reports the experimental results obtained from these metaheuristic algorithms 

on unconstrained benchmark optimization problems. Section 5 concludes the paper along with future research 

directions. 

2. Current Metaheuristic Algorithms  

As a constant source of inspiration, nature continues to offer researchers new ideas for new efficient 

optimization algorithms. In the past decades, various metaheuristic intelligence optimization algorithms have 

been proposed to solve complex search and optimization problems. These algorithms have shown an 

outstanding performance on the problems.Hence, while many researchers have focused in adapting them on 

different problems or to improve their performances, some researchers have proposed novel algorithms 

inspired from biology, swarm, physics, and etc.  

 

ALO is a nature-inspired algorithm mimicking the hunting behavior of antlions in nature [4].ALO is 

implemented in five main steps: random walks of ants, building pits, entrapment of ants, catching preys, and 

lastly rebuilding pits. Pseudo-code of ALO is depicted in Figure 1. 

 

 
Figure 1. Pseudo-code of ALO 

 

DA is inspired from the static and dynamic swarming behaviors of dragonflies in nature [5]. Two essential 

phases in optimization, namely exploration and exploitation, are designed by modelling the social interaction 

of dragonflies in navigating, searching for foods, and avoiding enemies when swarming dynamically or 

statistically [5]. Pseudo-code of DA is shown in Figure 2. 
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Figure 2. Pseudo-code of DA 

 

GWO mimics the leadership hierarchy and hunting mechanism of gray wolves in nature [6]. GWO has three 

main steps of hunting, searching for prey, encircling prey, and attacking prey. Pseudo-code of GWO is shown 

in Figure 3. 

 

MFO is inspired from navigation method of moths in nature called transverse orientation [7]. Spiral flying 

path of moths around artificial lights (flames) has been mathematically modeled in MFO. Main steps of this 

algorithm are demonstrated in Figure 4. 

 

 
Figure 3. Pseudo-code of GWO 
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Figure 4. Pseudo-code of MFO 

 

MVO is a novel search and optimization algorithm main inspirations of which are based on three concepts in 

cosmology: white hole, black hole, and wormhole [8]. The mathematical models of these three concepts are 

developed to perform exploration, exploitation, and local search, in optimization respectively. Main steps of 

MVO are demonstrated in Figure 5. 

 

 
Figure 5. Pseudo-code of MVO 

 

SCA is an interesting math inspired search and optimization algorithm and uses mathematical model based on 

sine and cosine functions. SCA adaptively balances the exploration and exploitation phases in optimization 

quickly [9]. Main steps of SCA are demonstrated in Figure 6. 

 

 
Figure 6. Pseudo-code of SCA 

 

WOA is inspired from the bubble-net hunting strategy [10]. The mathematical model of WOA is based on 

encircling prey, bubble net hunting, and searching the prey. Main steps of WOA are demonstrated in Figure 7. 
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Figure 7. Pseudo-code of WOA 

 

 

3. Benchmark Functions 

To evaluate the performance of these seven current metaheuristic algorithm, five benchmark test functions 

with different characteristics have been used. These benchmark functions are frequently used to evaluate and 

compare the characteristics of optimization algorithms in terms of convergence, precision, robustness, and 

general performance. The nature, complexity, and other properties of these benchmark functions can be easily 

obtained from their definitions and the difficulty levels of these benchmark functions can be adjusted by 

changing their dimension and interval parameters [11].  

  

Chung Reynolds functionis a unimodal function with less complexity and it can be used to evaluate the 

converging behaviors of algorithms [12]. Its graph with two dimensions has been shown in Figure 8. 

Griewank function is a multi-modal function with many local optima and it can be used to test the global 

search ability of the optimization algorithms in avoiding premature convergence [13]. Its graph with two 

dimensions has been shown in Figure 9. Rastrigin function is highly multi-modal, but locations of the minima 

are regularly distributed. Its graph with two dimensions has been shown in Figure 10. Ackley is a multi-modal 

function with deep local optimizations and the variables are independent of each other [14].Its graph with two 

dimensions has been shown in Figure 11. Rosenbrock function is unimodal with two dimensions however 

multi-modal with higher dimensions [15]. Two dimensional Rosenbrock function has been shown in Figure 

12. Schwefel’s 2.22 is another unimodal function. It is separable, non-differentiable, continuous, and convex 

function [16].Its graph with two variables has been shown in Figure 13. Schwefel is multimodal, asymmetric 

and separable test function [17] and its graph with two dimensions has been shown in Figure 14. 

 

The selected benchmark functions and their properties have been demonstrated in Table 1. The dimensions (n) 

for all benchmark functions have been determined as 10. 
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Figure 8. Chung Reynolds function with two variables 

 

 

 

 
Figure 9. Griewank function with two variables 
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Table 1. Benchmark function 

 

Function Name Definition Interval 
Characteristic
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Chung Reynolds 𝑓ଵሺ𝑥ሻ = (∑ 𝑥𝑖ଶ𝑛
𝑖=ଵ )ଶ
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Rosenbrock 𝑓5ሺ𝑥ሻ = ∑ ቀͳͲͲ(𝑥𝑖ଶ − 𝑥𝑖+ଵ)ଶ + ሺ𝑥𝑖 − ͳሻଶቁ𝑛−ଵ
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Schwefel’s 2.22 i
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Schwefel 𝑓7ሺ𝑥ሻ = 4ͳͺ.ͻͺʹͻ × 𝑛 − ∑ 𝑥𝑖 sin (|𝑥𝑖|ଵଶ)𝑛
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 Figure 10. Rastrigin function with two variables 
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Figure 11. Ackley function with two variables 

 

 

Figure 12. Rosenbrock function with two variables 
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Figure 13. Schwefel’s 2.22 function with two variables 

 

 

Figure 14. Schwefel function with two variables 
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4. Experimental Results 

 

The performances of algorithms have been tested on Chung Reynolds function with 10 dimensions. Initial 

population size of all algorithms is selected as 30 and maximum iteration number for termination criteria is 

determined as 100. All algorithm parameters have been selected as their original values. All algorithms have 

been run 10 times. The results obtained from this problem have been demonstrated in Table 2. From these 

results, it can be concluded that WOA is the best algorithm within this unimodal problem. GWO is the second 

best algorithm. MFO seems the worst algorithm within this function using this dimension and interval of the 

problem and iteration number for the algorithms. 

 

Table 2. Performances of algorithms on Chung Reynolds function 

 

Algorithm Mean optimum 

ALO 0.3793 

DA 50.2239 

GWO 8.3804e-18 

MFO 88.5679 

MVO 0.0478 

SCA 0.2782 

WOA 2.7393e-28 

 

The performances of algorithms have been tested on Griewank function with 10 dimensions. Initial population 

size of all algorithms is selected as 30 and maximum iteration number for termination criteria is determined as 

100. All algorithm parameters have been selected as their original values. All algorithms have been run 10 

times. The results obtained from this problem have been demonstrated in Table 3. From these results, it can be 

concluded that WOA is the best algorithm within this multi-modal problem. GWO is the second best 

algorithm.SCA seems the worst algorithm within this function in the selected dimension and interval for the 

problem and iteration number for the algorithms. 

 

Table 3. Performances of algorithms on Griewank function 

 

Algorithm Mean optimum 

ALO 0.0913 

DA 0.9221 

GWO 0.0319e-4 

MFO 1.0425 

MVO 0.6848 

SCA 1.0809 

WOA 5.4877e-7 

 

The performances of algorithms have also been tested on another multi-modal problem, namely Rastrigin 

function, with 10 dimensions. Initial population size of all algorithms is selected as 30 and maximum iteration 

number for termination criteria is determined as 100. All algorithm parameters have been selected as their 

original values. All algorithms have been run 10 times. The results obtained from this problem have been 

demonstrated in Table 4. From these results, it can be concluded that again, WOA is the best algorithm within 

this multi-modal problem. GWO is the second best algorithm. SCA seems the worst algorithm within this 

function in the selected dimension and interval for the problem and iteration number for the algorithms. 
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Table 4. Performances of algorithms on Rastrigin function 

 

Algorithm Mean optimum 

ALO 22.9145 

DA 42.7102 

GWO 4.4678 

MFO 15.5878 

MVO 33.9496 

SCA 47.6633 

WOA 1.0747e-06 

 

The performance comparisons of the algorithm on another multi-modal problem, namely Ackley function, 

with 10 dimensions have been demonstrated in Table 5. Initial population size of all algorithms is selected as 

30 and maximum iteration number for termination criteria is determined as 100. All algorithm parameters 

have been selected as their original values. All algorithms have been run 10 times. From these results, it can 

be concluded that again, WOA is the best algorithm within this multi-modal problem. GWO is the second best 

algorithm. DA seems the worst algorithm within this function using the selected dimension and interval for 

the Ackley function and iteration number for the algorithms. 

 
The performance comparisons of the algorithm on Rosenbrock with 10 dimensions have been demonstrated in 

Table 6. Initial population size of all algorithms is selected as 30 and maximum iteration number for 

termination criteria is determined as 100. All algorithm parameters have been selected as their original values. 

All algorithms have been run 10 times. From these results, it can be concluded that again, GWO is the best 

algorithm within this multi-modal problem. WOA is the second best algorithm. DA seems the worst algorithm 

within this function in the selected dimension and interval for the Rosenbrock function and iteration number 

for the algorithms. 

Table 5. Performances of algorithms on Ackley function 

 

Algorithm Mean optimum 

ALO 4.1785 

DA 5.6896 

GWO 1.1195e-05 

MFO 3.4870 

MVO 0.3215 

SCA 0.4256 

WOA 1.9207e-06 

 
Table 6. Performances of algorithms on Rosenbrock function 

 

Algorithm Mean optimum 

ALO 12.7817 

DA 573.5498 

GWO 8.0282 

MFO 299.0972 

MVO 12.7262 

SCA 238.4051 

WOA 8.6148 

 

The performance comparisons of the algorithm on unimodal Schwefel’s 2.22 with 10 dimensions have been 

demonstrated in Table 7. Initial population size of the algorithm is selected as 30 and maximum iteration 

number for termination criteria is determined as 100. All algorithms have been run 10 times. According to 

theobtained experimental results, it can be concluded that, WOA is the best algorithm within this unimodal 

problem. GWO is the second best algorithm. MVO seems the worst algorithm within this function in the 

selected dimension and interval for the Schwefel’s 2.22 function and iteration number for the algorithms. 
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Table 7. Performances of algorithms on Schwefel’s 2.22 function 

 

Algorithm Mean optimum 

ALO 332.3281 

DA 210.4979 

GWO 4.5780e-05 

MFO 9.5452 

MVO 1.5024e+03 

SCA 1.4083 

WOA 1.0563e-08 

 

The performance comparisons of the algorithm on multi-modal Schwefel with 10 dimensions have been 

demonstrated in Table 8. Initial population size of the algorithm is selected as 30 and maximum iteration 

number for termination criteria is determined as 100. All algorithms have been run 10 times. According to the 

obtained experimental results, it can be concluded that, MFO is the best algorithm within this multi-modal 

function. DA is the second best algorithm. SCA seems the worst algorithm within this function in the selected 

dimension and interval for the Schwefel function and iteration number for the algorithms. 

 

Table 8. Performances of algorithms on Schwefel function 

 

Algorithm Mean optimum 

ALO 1.2240e+03 

DA 955.3876 

GWO 1.8975e+03 

MFO 792.3943 

MVO 1.2647e+03 

SCA 2.1515e+03 

WOA 1.1430e+03 

 

Table 9 demonstrates the total successes of these algorithms. According to this table, WOA has performed 

better in five of the seven benchmark functions. GWO has performed better only one and MFO has also 

performed in only one of the seven functions.  

 

Table 9. General evaluations 

 

 

 

 

 

 

 

 

 

 

 

 

Function 

Name 

Characteri

stics 

Best 

Algorithm 

Worst 

Algorithm 

Chung 

Reynolds 
Unimodal WOA MFO 

Griewank 
Multi-

modal 
WOA SCA 

Rastrigin 
Multi-

modal 
WOA SCA 

Ackley 
Multi-

modal 
WOA DA 

Rosenbrock 
Multi-

modal 
GWO DA 

Schwefel’s 

2.22 
Unimodal WOA MVO 

Schwefel 
Multi-

modal 
MFO SCA 



Umit Can et al.  PEN Vol. 5, No. 3, November 2017, pp. 328 – 340 

340 

5. Conclusions 

 
Novel metaheuristic algorithms are still proposed due to the absence of the most efficient method for all types 

of search and optimization problems. In this paper, performances of current metaheuristic search and 

optimization methods have been tested and seven new algorithms, namely Ant Lion Optimization, Dragonfly 

Algorithm, Grey Wolf Optimization, Moth-Flame Optimization, Multi-Verse Optimizer, Sine Cosine 

Algorithm, and Whale Optimization Algorithm have been selected for this goal. They have been executed on 

unconstrained unimodal and multi-modal benchmark optimization problems. According to the obtained results 

within the benchmark functions, WOA is the best algorithm and GWO is the second best algorithm.WOA has 

performed better in five of the seven benchmark functions. GWO has performed better in only one and MFO 

has also performed in only one of the seven functions. 

 

These algorithms are very new computational methods and they can be improved in many ways.More 

validation studies should be performed to discover the capabilities of these algorithms in dealing with the 

search and optimization problems.There are positive challenges in terms of efficiency and best possible usage 

of these algorithms. 
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