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ABSTRACT   

This article aims to estimate the return stock rate of the private banking sector, with two banks, by adopting 
a partial linear model based on the arbitrage pricing model (APT) theory, using Wavelet and Kernel 

Smoothers. The results have proved that the wavelet method is the best. Also, the results of the market 

portfolio impact and inflation rate have proved an adversely effectiveness on the rate of return, and direct 
impact of the money supply. 
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1. Introduction 

Regression function illustrates the relationship between explanatory variables and their effect on the dependent 
variable. Many articles and researches have been written about the partial linear models (PLM) for the past three 

decades for one reason that the use of these models being more flexible than standard linear models since it 

combines non-parametric and parametric compounds together and the other reason because it gives an easier 
explanation of the effect of each variable compared with the complete non-parametric regression. 

Parametric models may contain variables have unknown distribution and do not care about nonlinear effects. 

Non-parametric models appear curse of dimensionality problem when increased the number of variables that 
effect on the estimates. 

The main objective of the partial linear model is to reduce the assumptions on one or more of the explanatory 

variables and stay on the linear relationship among the variables. 

All methods of estimation for partial linear regression models (PLM) are basically relied on non-parametric 
regression estimation procedures, thus the method of the non-parameter estimation method could be extended 

naturally to estimate and to assess the partial linear regression models (PLM).  

Several methods have been proposed in partial linear models (PLM), Engle in 1986 and Heckman Rice in 1986 
used the Smoothing Spline technique. Speckman in 1988, introduced the idea of the least squares technique. 

Robinson 1988 constructed estimate the non-parametric component by using least square method with Nadarya-

Watson. In 1997, Hamilton, Genentech, and Truong used the Local Linear Smoother based on Speckman 

method [1]. 
The partial linear model is defined as [2] [3]:  

𝑦𝑖 = 𝑋𝑖
𝑇𝛽 +  𝑚(𝑡𝑖) +  𝜀𝑖                                                                   (1) 

Where,  

𝑦𝑖 refers to the response observation 

𝑋𝑖 is fixed known p-dimensional vectors 

𝑡𝑖 stand for the values of an extra univariate variable such as the time at which the observation is made 

 𝑡𝑖 =  
𝑖

𝑛
 , 𝑡 ∈ [0,1] 

𝛽 is unknown p-dimensional parameter vector 

 𝑚 is unknown smooth function 

𝜀𝑖 are random errors assumed to be iid 𝜀 ~ 𝑁(0, 𝜎2) distributed. 
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The main objective is to estimate the vector parameters β that is unknown and the non-parameter function 𝑚(𝑡) 
[4]. 

The PLM is considered as part of the Semi-parametric Models that are divided into three types as follows [5]: 

 
Figure 1.  The types of semi-parametric models 

 

 

2. Wavelet smoother  

Wavelets are relatively modern mathematical tool, and considered as an extension of the ideas of the Fourier 

theory in 1800. Wavelet analysis is used to represent, analyze, process and synthesize the various data which 
studied in mathematics, science, engineering, economics and social studies (radar signal, sound, image and 

others). 

Haar has been the first who discovered the wavelet in 1910 and he described some of its characteristics that are 
useful in the construction of public wavelet systems. The main idea of wavelet transform is to get rid of the 

problem of loss of data within the frequency and time fields in Fourier transform.  

The continuous wavelet transformation has been discovered by Alex Grossman and Jean Morlet in 1984. Then, 

the orthogonal wavelet transformation had been discovered by Lemarie and Meyer in 1986, then in 1988  
Daubechies founded the orthogonal bases made of wavelets compactly supported. In 1989, Mallat designed 

algorithm of the fast wavelet transform, whereas Victor Wickerhauser had introduced wavelet packs in 1991 

and applied them to data compression. In 1994, Donoho and Johnstone had introduced a threshold that 
minimizes noises of the signal or image and others [6, 7].  

It is worthy to be noting that wavelet transform helps us to know the frequency and time information at the same 

time, where wavelet transformations rely on small waves, called waves. The general method in the wavelet 
transform lies in creating an approximate compound using scaling function (low frequency filter) and wavelets 

functions (high frequency filter), which produces a window of variable dimensions to obtain high accuracy in 

time and frequency [6] [7]. 

𝑚̂(𝑎, 𝑏) =  
1

√ 𝑎
∫ 𝑚(𝑡)  𝜓(

𝑡 − 𝑏

𝑎

∞

−∞
)𝑑𝑡                                                            (2)   

Where, a: scaling coefficient 

b: Translation coefficient  
t: Time 

In 1989, Mallat [8], introduced an algorithm for Fast wavelet transform based on low and high filters in the 

process of transform,  the sample size should be 2𝑗   because when the wavelet transform of filters, 2 filters  
becomes 4  filters  and 4 filters  become 8 filters  and so on . Figure 2 shows the quick wavelength transform 

according to the cascade algorithm which states that we should start by calculating the scaling function  ∅0(𝑡) 

until we get the scaling function ∅𝑛(𝑡) as in the following formula: 

 

∅𝑛+1(𝑡) =  √2 ∑ ℎ𝑘∅𝑛(2𝑡 − 𝑘)    2𝑁−1
𝑘=0                                                  (3) 
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Figure 2. The fast wavelet transform for Mallat using the filters 

To find the inverse of wavelet transform, we reverse the process above. 

Wavelet Shrinkage and Denoising is a way to reduce the noise of a signal, image, and so on. Donoho and 

Johnstone in 1994, proposed a non-linear wavelet estimator for non-parametric function based on the 

reconstruction of the wavelet coefficients and retention of the coefficients of scaling. The wavelet is reduced by 
the threshold employed to transform the low-frequency signal to zero and the high-frequency signal keeps it or 

gets it close to zero [9]. 

Donoho and Johnstone provided two types of signal denoising that are as follows:    
1- Hard threshold function: this function transform the values (wavelet coefficients vector) that are smaller than 

the threshold value to zero and values greater than the threshold remain the same. 

2- Soft threshold function: transform the smallest values than the threshold value to zero and shrinks larger 
values than threshold value. 

 There are several ways to find the threshold value, one of these is the Universal threshold method proposed by 

Donoho and Johnstone in 1994: 

𝜆𝑈𝑉 =  𝜎 √2  log(𝑛)                                                                                (4)   

𝜎 ̂ represents the standard deviation of the noise level and is given by 

𝜎 ̂ =  
𝑀𝐴𝐷 (𝑦1,𝑑)

0.6745
⁄                                                                            (5)   

The other method is Cross Validation (CV) that proposed by "Nason" in 1996. This method is used on a wide 

range and based on dividing it into two equal groups of sample size. The first group contains even numbers and 

the second group contains odd numbers so that the odd ordered data is used. To predict the ordered even data 

and vice versa, leading to the "Leave-out-half" strategy and how to calculate the value of the parameter 𝜆, so 

we have the vector 𝑦𝑖 = (𝑦1, … … , 𝑦𝑛)′ with a sample size 𝑛 = 2𝑗  [10]. 

All the odd values of the vector 𝑦𝑖 are to be deleted, so that the sample size becomes 𝑛 = 2𝑗−1 and then this 

reconfigured data is used to create an estimator of the 𝑔̂𝜆
𝐸 function for even numbers by a practical threshold 

either a threshold hard or soft as in the following formula [11]:  

𝑔̅𝜆,𝑗
𝐸 =  

1

2
 (𝑔̂𝜆,𝑗+1

𝐸 + 𝑔̂𝜆,𝑗
𝐸 ),      𝑗 = 1 , … … … , 𝑛

2⁄                                            (6)   

So, 𝑔̂𝜆,𝑛 2⁄ +1
𝐸 =  𝑔̂𝜆,1

𝐸    because the function 𝑔 is assumed to be periodic. The function 𝑔̂𝜆
𝑂   for the reconfigured 

individual numbers is estimated to become: 

𝑔̅𝜆,𝑗
𝑂 =  

1

2
 (𝑔̂𝜆,𝑗+1

𝑂 + 𝑔̂𝜆,𝑗
𝑂 ),      𝑗 = 1 , … … … , 𝑛

2⁄                                             (7) 

The final estimator 𝑀̂(𝜆) for this method is then obtained so that the parameter 𝜆min  is the only minimizer of 

this estimator, as that shown in the following formats: 

𝑀̂(𝜆) =  ∑ [(𝑔̅𝜆,𝑗
𝐸 − 𝑦2𝑗+1)2 + (𝑔̅𝜆,𝑗

𝑂 − 𝑦2𝑗)2]
𝑛

2⁄

𝑗=1
                                            (8) 

𝜆𝑚𝑖𝑛 = arg min
𝜆 ≥0

𝑀̂(𝜆)                                                                                (9) 

The final parameter of the "cross-validation" method is then obtained as in the formula below: 

𝜆𝐶𝑉 = (1 −
log 2

log 𝑛
)

−1 2⁄

 𝜆𝑚𝑖𝑛                                                                        (10)  

The partial linear model estimation is an extension for the non-parametric estimation process, so the non-

parametric estimation process will be illustrated. The non-parametric regression model is defined as follows:  

𝑦𝑖 = 𝑚(𝑡𝑖) +  𝜀𝑖                                                                         (11)                                                    

Where, 𝑚(𝑡𝑖) is an unknown function, 𝜀𝑖 usually assumes (i.i.d) and is normally distributed N (0,1). We can 

write the model in terms of matrices as it becomes as follows: 
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𝑌 = 𝑚 +  𝜀                                                                                      (12) 

Equation (12) is multiplied by the discrete wavelet transform matrix W to become the model as follows: 

𝑊𝑌 = 𝑊𝑚 + 𝑊𝜀                                                                               (13) 

Where,  𝜃 = 𝑊𝑚  , 𝑤 = 𝑊𝑦  , thus the  equation (12) could be rewritten in another form: 

𝑌 = 𝑊−1𝜃 + 𝜀                                                                               (14) 

The estimator θ̂  can be find by using the soft threshold: 

 

𝜃𝑠 = 𝑠𝑔𝑛(𝑤) ∘ (|𝑤| − 𝜆𝑒)+ =  arg  min
𝜃𝑖

1

2
(𝑤𝑖 − 𝜃𝑖)2 +  𝜆|𝜃𝑖|                          (15) 

                                                                                   𝑖 = 1, … … . , 𝑛               
Where, λ indicates threshold value, and (∘) means multiplying the components between two vectors. 

The non-parametric estimator 𝑚̂  or 𝑆(𝑌)  of the response variable (𝑌) can then be obtained by multiplying the 

soft threshold estimator θ̂s  by the inverse of the wavelet transform matrix W. 

𝑚̂(𝑌) = 𝑆(𝑌) =  𝑊−1𝜃𝑠                                                                      (16) 

In 2004, Xiao-Wen Changa & Leming Qu [12] proposed a Backfitting method for estimating a partial linear 

model using wavelet smoother. This method is based on a descent iterative algorithm. This algorithm is more 

complex than the normal Backfitting algorithm, this method stated to estimate the partial linear model by 

minimizing the square of L2 Norm of the residual vector at parts of the norm L1 for non-parametric wavelet 
coefficients concerning with the non-parametric compound. This method is used to avoid non-parametric 

regression problems. 

In 2003, Qu [13], proposed another method for estimating the partial linear model using the threshold function, 
a method similar to the Speckman method. The Wavelet Smoother can be applied to this method as in the Kernel 

Smoother and Spline Smoother. 

In 1988, Speckman [14], proposed an algorithm for estimating a partial linear model using partial residual 

analyzes. Under appropriate assumptions, the convergent bias and variance are obtained. Thus the  𝛽 estimation 

by partial residual method shows better bias and no loss of convergence in contrast as well.  

Using the partial residual method of the partial linear model in equation (1), we get both the estimator 𝛽 for the 

parametric part and the estimator 𝑚̂ for the non-parametric part as follows:  

𝜀 ʹ𝜀 = (𝑌 − 𝑋𝛽 − 𝑊𝑚)ʹ(𝑌 − 𝑋𝛽 − 𝑊𝑚) 

By taking the derivative of both the parametric and non-parametric part and equating it to zero, we get the 
estimators as follows:  

𝛽̂ = (𝑋 ʹ(𝐼 − 𝐾)ʹ(𝐼 − 𝐾)𝑋)
−1

𝑋 ʹ(𝐼 − 𝐾)ʹ(𝐼 − 𝐾)𝑌 

𝐾 =  𝑊(𝑊 ʹ𝑊)
−1

𝑊 ʹ 

Suppose that:  

𝑌̃ = (𝐼 − 𝐾)𝑌 = 𝑌 − 𝐾𝑌 

𝑋̃ = (𝐼 − 𝐾)𝑋 = 𝑋 − 𝐾𝑋 

Therefore, the parametric estimator  𝛽̂LS  and non-parameter estimator  𝑚̂(𝑡) are as follows: 

∴  𝛽̂
𝐿𝑆

= (𝑋̃
ʹ
𝑋̃)

−1

𝑋̃
ʹ
𝑌̃                                                                 (17) 

∴ 𝑚̂(𝑡) =  𝐾(Y − Xβ̂)                                                               (18)              

Where, 𝑆(𝑌) and 𝑆(𝑋) are represent the nonlinear wavelet shrinkage as previously defined in equation (16).  

𝑆(𝑌) And 𝑆(𝑋) are used to obtain the parametric estimator β̂W  and the non-parametric estimator   𝑚̂𝑊(𝑡)  as 

below: 

𝑚̂(𝑌) = 𝑆(𝑌) = 𝑊−1𝜃𝑠 

𝑋 = 𝑚 +  𝜀                                                                                     (19) 

𝑊𝑋 = 𝑊𝑚 + 𝑊𝜀                                                                             (20) 

As long as   𝛼 = 𝑊𝑚 and 𝐴 = 𝑊𝑋,  thus the equation (19) can be re-written in another form: 

𝑋  = 𝑊−1𝛼 + 𝜀                                                                              (21) 

The estimator α ̂ is found by using a soft threshold: 

𝛼̂𝑠 = 𝑠𝑔𝑛(𝐴) ∘ (|𝐴| − 𝜆𝑒)+                                                                  (22) 

Then 𝑆(𝑋) can be obtained by multiplying   𝛼̂𝑠 by the inverse of the wavelet transform matrix reverse. 

𝑚̂(𝑋) = 𝑆(𝑋) =  𝑊−1𝛼̂𝑠                                                                       (23) 
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So, the wavelet smoother could be applied to get:  

𝑌̃𝑊 = (𝐼 − 𝑆)𝑌 = 𝑌 − 𝑆(𝑌) 

𝑋̃𝑊 = (𝐼 − 𝑆)𝑋 = 𝑋 − 𝑆(𝑋) 
Then, the estimators of the parametric part could be found according to the following formula: 

∴  𝛽̂
𝑊

= (𝑋̃
′
𝑊𝑋̃𝑊)

−1

𝑋̃
′
𝑊𝑌̃𝑊                                                               (24) 

 

To estimate the non-parametric portion of the partial linear model (PLM), be: 

𝑍 = 𝑌 − 𝑋𝛽̂𝑊                                                                        (25) 

A new vector Z, is produced and the nonlinear wavelet smoother is shrunk by the soft threshold as previously 

defined on the vector (Z) to become as follows:  

𝑍 = 𝑚 +  𝜀                                                                                     (26) 

𝑊𝑍 = 𝑊𝑚 + 𝑊𝜀                                                                     (27) 

Since 𝐷 = 𝑊𝑍 and  𝛾 = 𝑊𝑚,  the equation (26) can be re-written in another form: 

𝑍 = 𝑊−1𝛾 + 𝜀                                                                       (28) 

𝛾𝑠 =  𝑠𝑔𝑛(𝐷) ∘ (|𝐷| − 𝜆𝑒)+                                                                 (29) 

The final estimation of the non-parametric part is then obtained as follows: 

𝑚̂𝑊(𝑡) = 𝑆(𝑍) = 𝑆(Y − Xβ̂W)  =  𝑊−1𝛾𝑠                                               (30) 

3. Kernel smoother 

The mathematical ideas and skills have been developed in the analysis of non-parametric regression estimation 
to semi-parametric in the past three decades and that Kernel Smoother is a wider smoothness and most famous. 

As we mentioned earlier, the kernel regression estimators are endowed with the advantage of intuitive and 

mathematical simplicity and are used with a fixed and random designs. Within each of these non-parametric 
estimators, there are also many different methods. Examples of these methods are Nadarya Watson, Nadarya  & 

Watson, Kernel local polynomial estimator, Muller, Clevel, Stone, Kernel  alternative estimators and Pristley 

Chao.  
There are several methods for Kernel smoother and the most important of these methods is the method of local 

linear smoother [5]. 

3.1. Local linear kernel smoother 

In 1977, Stone suggested a local Linear Smoother method for estimating the non-parametric model using the 
weighted function W. The results were compared with other methods based on the Kernel smoother estimation. 

The results showed, by using the local linear smoother (LLS), that convergent bias and variance conditions are 

not affected at the boundary. Cleveland in 1979, proposed a method called robust locally weighted regression 
on observations (X, Y) and estimated points used as a smoother estimator. In this method numbers of points are 

used where the window size of the points (t) varies from one to another.  

When finding these estimators using the weighted regression will reduce the effect of outlier values.  
In 1993 , Jianqing Fan  used MiniMax to prove that the estimators  achieve the best probability of stability and 

convergence rates  and has the characteristics of testing important samples that are adapted to the fixed and 

random designs , the local linear smoother  (LLS) depends on the following minimizer problem [15][16]: 

 (𝑎,𝑏)
𝑚𝑖𝑛 ∑(𝑌𝑗 − 𝛼 − 𝛽(𝑡𝑗 − 𝑇))2𝐾(

𝑡𝑗 − 𝑇

ℎ
)

𝑛

𝑗=1

                                                 (31) 

Where the two estimators 𝑎̂ = 𝑎̂(t),  𝛽̂ = 𝛽̂(𝑡) are consistent estimator for the non-parametric function 𝑚(𝑡) 

and for the first derivative of the non- parametric function 𝑚′(𝑡) [17] [18]. 

Therefore, using the Speckman method to estimate the partial linear regression model, the estimation of the 

parameter β for the parametric part and the non- parametric estimation  𝑚̂(𝑡) are obtained according to the 
following formulas [19][20]:  

𝛽̂𝑆𝑝𝑒𝑐𝑘 =  (𝑋𝑇(𝐼 − 𝑆)𝑇(𝐼 − 𝑆)𝑋)−1𝑋𝑇(𝐼 − 𝑆)𝑇(𝐼 − 𝑆)𝑌                           (32) 

Where,   𝑋̃𝑇 = 𝑋𝑇(𝐼 − 𝑆)𝑇    ,  𝑋 ̃ = (𝐼 − 𝑆)𝑋    ,𝑌 ̃ =  (𝐼 − 𝑆)𝑌  

𝛽̂𝑆𝑝𝑒𝑐𝑘 =  (𝑋̃𝑇 𝑋 ̃)
−1

𝑋̃𝑇𝑌 ̃                                                        (33) 

𝑚̂𝑆𝑝𝑒𝑐𝑘 =  𝑆(𝑌 − 𝑋𝑇𝛽̂𝑆𝑝𝑒𝑐𝑘)                                                      (34) 
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Since  𝐼   is a one-dimensional matrix of  𝑛 × 𝑛     the S matrix of the local linear smoother used in finding the final 
estimates of the partial linear model (PLM) can be obtained as follows: 

𝑆 =  (𝑉𝑡1

𝑇 , … … … , 𝑉𝑡𝑛

𝑇 )
𝑇

                                                            (35) 

𝑉𝑡 is defined as follows:   

𝑉𝑡 =  𝑒𝑡
𝑇(𝑄𝑡

𝑇𝑊𝑡𝑄𝑡)𝑇𝑄𝑡
𝑇𝑊𝑡                                                                 (36) 

𝑄𝑡 =  [
1 (𝑇1 − 𝑡)
⋮ ⋮
1 (𝑇𝑛 − 𝑡)

]       

 𝑊𝑡 = 𝑑𝑖𝑎𝑔 {𝐾ℎ(𝑇1 − 𝑡),       … . .    , 𝐾ℎ(𝑇𝑛 − 𝑡) } 

𝐾ℎ(𝑢) =  
1

ℎ
 𝐾 (

𝑢

ℎ
)     ,      𝑒𝑡

𝑇 =  (1, 0, … . ,0 )     

𝑊𝑡 represents matrix of weights and  𝑒𝑡
𝑇  is a vector whose first value is equal to one and the rest are zero. 

Wand and Jones explained the case of a fixed design, that the non-parametric variable 𝑡𝑖 =
𝑖

𝑛
      follows the 

following assumptions [21]: 

1. The function 𝑚"  is continuous (has a second derivative) for the period [0,1] 

2. K is symmetric around zero and supported for the period [-1,1] 

3. The Bandwidth is a sequence verifying 𝑛 → ∞     𝑛ℎ → ∞       ℎ → 0  

4. The point t at which the estimation is taking place satisfies ℎ < 𝑡 < 1 − ℎ, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0 where 𝑛0 is fixed 

Where the fourth condition implies that t is more than the band width away from the boundary for each n large 

enough. The simplified way to represent the serial of weights  𝑤𝑛𝑖(𝑡)𝑖=0
𝑛     is to describe the weighted function 𝑤𝑛𝑖    

by the K(u) Kernel function and the scaling parameter that modifies the size and shape of the relative weights on  t  

[16]. 
  The Gaussian & Uniform Kernel functions will be chosen, it should be non-negative, symmetric around zero, 

continuous and have a second derivative [22].  

 

Table 1. Kernel functions 

Kernel Explicit form 

Gaussian kernel , 𝑢 ∈ [−∞, ∞] (K(u) = 
1

√2𝜋
 exp(−𝑢2 

Uniform kernel K(u) = 
1

2
 ,    𝑢 ∈ [−1,1] 

 

The choice of the smoother parameter or bandwidth is considered most important than the choice of Kernel 
functions. 

 The small bandwidth is connected with areas of intensive data, while the large bandwidth is desired in areas with 

sparse data. The value of the bandwidth can be found using the Cross Validation (CV) method [23]. 

4. Application  

In 1976, Steven Ross introduced the arbitrage pricing theory (APT) to explain the return on investment in securities, 

it is an alternative theory of capital asset pricing model (CAPM). This theory stated that there is one beta coefficient 

that is the Return Rate of the market portfolio effecting return stocks Rate, whereas the theory of arbitrage pricing 
refers to the return Rate of the market portfolio is not the only factor. The model of the arbitrage pricing theory It 

examines the relationship between systemic market risk and return Rate. This model indicates that the return of 

securities depends on a variety of factors and these factors affect the return and the market in general [24]. 
What distinguishes the pricing theory of arbitrage (APT) from the theory of capital asset pricing model (CAPM) is 

its comprehensiveness of all risks. The APT model assumes that financial markets are competitive and can reflect 

the returns of assets as a linear function of the risk factors group k [25]. 

The APT model is used to calculate the return Rate on appropriate investments with the usual stocks is hugely used 
[26]. 

 

Therefore, the partial linear regression model will be constructed in light of the arbitrage pricing theory (APT) as 
follows: 

Ri =  𝛽1𝑅𝑚 + 𝛽2 𝑃𝐼 + 𝛽3𝑀2 + 𝑚(𝑡) + 𝜀                                            (37) 
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Where,    

Ri: Return stock Rate for each organization or company 

𝑅𝑚:   Return Rate of Market Portfolio  

𝑃𝐼: Inflation Rate.  

𝑀2: Broad presentation of the monetary 

t : Time 

𝜀: The non – systematic risk for each organization or company. 

The data were collected from the Central Bureau of Statistics and Stocks and securities with a sample size equal to 
(128) months. These data include: 

1.   Return Rate for the two Banks (the Iraqi Investment Bank and the Iraqi Credit Bank). 

2.  Market portfolio. 
3.  Inflation rate of consumer prices based on 2007 as the bases year. 

4.  Money supply in its broad sense. 

4.  Time of 128 months. 

5. Results 

In order to estimate the partial linear model (PLM) and to obtain the results according to the algorithms mentioned 

in the theoretical aspect, we must first extract preliminary estimates for the parametric linear model (PLM) and 

according to the method of least squares normal (OLS) as in the following formula: 

𝛽 = (𝑋′𝑋)−1𝑋′𝑌 

 

5.1. Iraqi investment bank  

The return stock rate will be estimate for Iraqi Investment Bank. Where the estimates are found for the parametric 

part and then the non-parametric part of the partial linear model (PLM) as shown in the table below: 

Table 2. Parametric estimation values 𝛽   using 

OLS, wavelet smoother and local linear smoother method 

Parameters 

Method 
𝛽1 𝛽2 𝛽3 

OLS - 0.1111 - 0.3212 0.2507 

Wavelet (C.V) - 0.6223 - 1.5890 - 0.0849 

Wavelet (UN.) - 0.6343 - 1.2697 1.4220 

LLS (Gaussian) - 0.0972 - 0.9926 0.2799 

LLS (Uniform) - 0.0885 - 1.2933 - 0.9325 
 

 

The Mean Squared Error is then calculated for the methods used in estimating the partial linear model (PLM) of 

the return stock rate data (banking sector / Iraqi investment bank), as in the table below:  

Table 3. The values of mean squared error (MSE)  

of the return stock rate of the investment bank 

Estimation Method Wavelet (C.V) Wavelet (UN.) LLS (Gaussian) LLS (Uniform) 

MSE 1.055876 0.9759171 1.452446 6.354019 

 
Figure 3 explains the real and the estimated data for the observation (Y) return stock rate of investment bank 

based on different kernel functions. 
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Figure 3. The real and the estimated data for the observation (Y) return stock rate of investment bank 

 

5.2. Iraqi credit bank  

The return stock rate will be estimated for the Iraqi Investment Bank. Estimates are found for the parametric part 

and then the non-parametric part of the partial linear model (PLM) as shown in the table below: 

Table 4. Parametric estimation values 𝛽 using 

 OLS, wavelet method and local linear smoother method 

Parameters 

Method 
𝛽1 𝛽2 𝛽3 

OLS - 0.0460 - 0.2707 0.1821 

Wavelet (C.V) - 0.6199 - 2.2064 0.3093 

Wavelet (UN.) - 0.6009 - 1.1585 0.0939 

LLS (Gaussian) - 0.0378 - 0.7288 - 0.1404 

LLS (Uniform) - 0.0213 - 0.7589 - 0.7990 

 

The mean squared error is then calculated for the methods used in estimating the partial linear model (PLM) of the 

return stock rate data (Iraqi Credit Bank), as in the table below: 
 

Table 5. The values of mean squared error (MSE) 

of the return stock rate of the credit bank 

Estimation Method Wavelet (C.V) Wavelet (UN.) LLS (Gaussian) LLS (Uniform) 
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MSE 1.257762 1.14669 1.789398 3.430014 

 

 
 

Figure 4. The real and the estimated data for the observation (Y) return stock rate of credit bank 
 

Where, 

Wavelet (C.V): Wavelet Smoother when using Cross validation threshold method  
Wavelet (UN.): Wavelet Smoother when using Universal threshold method 

LLS (Gaussian): Local Linear Smoother when choosing Gaussian Kernel function 

LLS (Uniform): Local Linear Smoother when choosing Uniform Kernel function 

 
Based on the results obtained in the process of estimating the partial linear model (PLM) using wavelet smoother 

and kernel smoother, we conclude the following:  

1. The above results indicate that the Wavelet Estimation method for partial linear model (PLM) of return 
stock rate data (investment and credit bankers) is better than the local linear Smoother method. 

2. The (MSE) values using wavelet smoother are smaller than MSE values when using local linear smoother.  

3. The universal threshold method is slightly smaller than the Cross-Validation method. 

4. The lowest estimator performance is Uniform function in local linear smoother. 

5. The values of the parametric estimates 𝛽 of the PLM are small due to the fact that the monthly percentage 

change in return stock rate is very low. 

6. Noting that the Market Portfolio and inflation rate have a negative impact and money supply positively 
affects the average return stock of the banks sector.  

 

6. Conclusions 

The partial linear regression model based on Arbitrage Pricing Model (APT) is distinguished from the parametric 

and non-parametric models by obtaining the best unbiased estimates of the parametric and non-parametric data and 

solving the problem of data variability in light of economic and financial phenomena. It is based on accurate and 

clear investment decisions as well as short and long term planning.  
Using the best estimation method (Wavelet universal), the final form of the partial linear model (PLM) of the return 

stock rate (Investment Bank) will be as follows:  

-5

-4

-3

-2

-1

0

1

2

3

4

1 5 9

13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

10
1

10
5

10
9

11
3

11
7

12
1

12
5



 PEN Vol. 8, No. 2, June 2020, pp.602- 612 

611 

𝑅̂IIB =  −0.6343 Rm −  1.2697 PI + 1.4220 M2 + m̂(t) 

And by using the best estimation method (Wavelet universal), the final form of the partial linear model (PLM) 

of the average return stock (Credit Bank) will be as follows: 

 

𝑅̂𝑖𝐼𝐶𝐵 =  − 0.6009 𝑅𝑚 −   1.1585 𝑃𝐼 +  0.0939 𝑀2 + m̂(t) 
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